Chance, Variation and Shared Ancestry: Population Genetics After the Synthesis

  • Michel VeuilleEmail author
Original Research


Chance has been a focus of attention ever since the beginning of population genetics, but neutrality has not, as natural selection once appeared to be the only worthwhile issue. Neutral change became a major source of interest during the neutralist–selectionist debate, 1970–1980. It retained interest beyond this period for two reasons that contributed to its becoming foundational for evolutionary reasoning. On the one hand, neutral evolution was the first mathematical prediction to emerge from Mendelian inheritance: until then evolution by natural selection was considered the alternative to the fixity of species; now it appears to be the alternative to continuous change. Second, neutral change generated a set of clear predictions on standing variation. These could be used as a reference for detecting more elusive alternative mechanisms of evolution including natural selection. In the wake of the transition from Mendelism to genomics, the combination of coalescent theory, DNA sequence variation, and numerical analysis made it possible to integrate contingent aspects of the history of species into a new null model, thus opening a new dimension in the concept of population that the Modern Synthesis formerly considered as a mere gene pool.


Population genetics Modern synthesis Neutral evolution Natural selection 



This study is dedicated to Jean Gayon (1949–2018) and was inspired by a series of seminars held in the Muséum National d’Histoire Naturelle, Paris, in June 2016 by Jean and myself on the evolution of evolutionary theory in the last half-century. I am greatly indebted to Richard Burian, Michael Dietrich, Jean-Baptiste Grodwohl, and Philippe Huneman for comments that greatly improved the manuscript. I thank Guillaume Achaz, Claudine Cohen, David Depew, Maureen O’Malley, Anya Plutinsky, and Amir Yassin for kindly commenting on former versions and exchanging ideas.


  1. Beatty, John. 1984. Chance and Natural Selection. Philosophy of Science 51: 183–211.CrossRefGoogle Scholar
  2. Beatty, John. 1987. Weighing the Risks: Stalemate in the Classical/Balance Controversy. Journal of the History of Biology 20: 289–319.CrossRefGoogle Scholar
  3. Beaumont, Mark A., W. Zhang, and D.J. Balding. 2002. Approximate Bayesian Computation in Population Genetics. Genetics 162: 2025–2035.Google Scholar
  4. Bocquet-Appel, Jean-Pierre. 1996. Interview de Gustave Malécot. Bulletin Mémoires de la Société d’Anthropologie 8: 105–114.CrossRefGoogle Scholar
  5. Brandon, Robert N. 2005. The Difference between Selection and Drift: A Reply to Millstein. Biology and Philosophy 20: 153–170.CrossRefGoogle Scholar
  6. Brandon, Robert N., and Leonore Fleming. 2014. Drift Sometimes Dominates Selection, and Vice Versa: A Reply to Clatterbuck, Sober and Lewontin. Biology & Philosophy 29: 577–585.CrossRefGoogle Scholar
  7. Brown, A.H.D., D.R. Marshall, and B.S. Weir. 1975. Population Differentiation under the Charge State Model. Genetics 81: 739–748.Google Scholar
  8. Charlesworth, Brian, M.T. Morgan, and Deborah Charlesworth. 1993. The Effect of Deleterious Mutations on Neutral Molecular Variation. Genetics 134: 1289–1303.Google Scholar
  9. Clatterbuck, Hayley, Elliott Sober, and Richard C. Lewontin. 2013. Selection Never Dominates Drift (Nor Vice Versa). Biology & Philosophy 28: 577–592.CrossRefGoogle Scholar
  10. Cobb, Matthew. 2017. 60 Years Ago, Francis Crick Changed the Logic of Biology. PLoS Biology 15: e2003243.CrossRefGoogle Scholar
  11. Cotterman, Charles W. 1940. A Calculus for Statistical Genetics. PhD Dissertation, Ohio State University, Colombus, Ohio.Google Scholar
  12. Coyne, Jerry. 1976. Lack of Genetic Similarity between Two Species of Drosophila as Revealed by Varied Techniques. Genetics 84: 593–607.Google Scholar
  13. Coyne, Jerry. 1978. Extent of Genetic Variation at a Highly Polymorphic Esterase Locus in Drosophila pseudoobscura. Proceedings of the National Academy of Sciences 75: 5090–5093.CrossRefGoogle Scholar
  14. Crow, James F. 1987. Muller, Dobzhansky and Overdominance. Journal of the History of Biology 20: 351–380.CrossRefGoogle Scholar
  15. Crow, James F. 1995. Motoo Kimura (1924-1994). Genetics 140: 1–5.Google Scholar
  16. Crow, James F. 1996. Sewall Wright’s Place in Twentieth Century Biology. In The Founders of Evolutionary Genetics, ed. Sahotra Sarkar, 167–200. Dordrecht, Holland: Kluwer.Google Scholar
  17. Darwin, Charles R. 1859. On the Origin of Species by Means of Natural Selection. London: John Murray.Google Scholar
  18. Darwin, Charles R. 1876. The Effects of Cross and Self-Fertilisation in the Vegetable Kingdom. London: John Murray.CrossRefGoogle Scholar
  19. Darwin, Charles Robert, and Alfred Russell Wallace. 1858. On the Tendency of Species to Form Varieties; and on the Perpetuation of Varieties and Species by Natural Means of Selection. Zoological Journal of the Linnean Society 3: 46–50.Google Scholar
  20. Demerec, M. (ed.). 1959. Genetics and Twentieth Century Darwinism. Cold Spring Harbor Symposia on Quantitative Biology, vol. 24. Cold Spring Harbor, New York: Cold Spring Harbor Press.Google Scholar
  21. Depaulis, Frantz, Sylvain Mousset, and Michel Veuille. 2004. Detecting Selective Sweeps with Haplotype Tests: Hitchhiking and Selective Tests. In Selective Sweeps, ed. Dmitry Nurminsky, 34–54. Georgetown, TX: Landes Bioscience.Google Scholar
  22. Dietrich, Michael R. 1994. The Origins of the Neutral Theory of Molecular Evolution. Journal of the History of Biology 27: 21–59.CrossRefGoogle Scholar
  23. Dietrich, Michael R. 2006. From Mendel to Molecules: A Brief History of Evolutionary Genetics. In Evolutionary Genetics: Concepts and Case Studies, ed. Charles W. Fox and Jason B. Wolf, 1–13. New York: Oxford University Press.Google Scholar
  24. Dietrich, Michael R., and Roberta L. Millstein. 2008. The Role of Causal Processes in the Neutral and Nearly Neutral Theories. Philosophy of Science 75: 548–559.CrossRefGoogle Scholar
  25. Dietrich, Michael R., and Edna Suárez Díaz. 2016. History of Molecular Evolution. In Encyclopedia of Evolution, vol. 3, ed. Richard Kliman, 55–60. Oxford, England: Academic Press.CrossRefGoogle Scholar
  26. Dobzhansky, Theodosius. 1954. Some New Trends in Population Genetics and in Evolutionary Studies. In Symposium on Genetics of Population Structure, ed. Adriano A. Buzzati-Traverso, 94–95. Naples, Italy: Secrétariat général de l’UISB.Google Scholar
  27. Drummond, A.J., A. Rambaut, B. Shapiro, and O.G. Pybus. 2005. Bayesian Coalescent Inference of Past Population Dynamics from Molecular Sequences. Molecular Biology and Evolution 22: 1185–1192.CrossRefGoogle Scholar
  28. Ewens, Warren J. 1972. The Sampling Theory of Selectively Neutral Alleles. Theoretical Population Biology 3: 87–112.CrossRefGoogle Scholar
  29. Ewens, Warren J. 2004. Mathematical Population Genetics I. Theoretical Introduction, 2nd ed. New York: Springer Nature.CrossRefGoogle Scholar
  30. Ewens, Warren J. 2016. Motoo Kimura and James Crow on the Infinitely Many Alleles Model. Genetics 202: 1243–1245.CrossRefGoogle Scholar
  31. Eyre-Walker, Adam, and Peter D. Keightley. 1999. High Genomic Deleterious Mutation Rates in Hominids. Nature 397: 344–347.CrossRefGoogle Scholar
  32. Fisher, Ronald A. 1918. The Correlation between Relatives on the Supposition of Mendelian Inheritance. Transactions of the Royal Society of Edinburgh 52: 399–433.CrossRefGoogle Scholar
  33. Fisher, Ronald A. 1922. On the Dominance Ratio. Proceedings of the Royal Society of Edinburgh 42: 321–341.CrossRefGoogle Scholar
  34. Fisher, Ronald A. 1930. The Genetical Theory of Natural Selection. Oxford: Clarendon Press.CrossRefGoogle Scholar
  35. Fisher, Ronald A. 1956. Statistical Methods and Scientific Inference. Edinburgh and London: Oliver and Boyd.Google Scholar
  36. Ford, E.B. 1940. Polymorphism and Taxonomy. In The New Systematics, ed. Julian Huxley, 493–510. Oxford: Oxford University Press.Google Scholar
  37. Ford, E.B. 1964. Ecological Genetics. London: Methuen & Co.Google Scholar
  38. Galton, Francis. 1889. Natural Inheritance. London: Macmillan.CrossRefGoogle Scholar
  39. Gayon, Jean. 1998. Darwinism’s Struggle for Survival: Heredity and the Hypothesis of Natural Selection. Cambridge: Cambridge University Press.Google Scholar
  40. Gillespie, John H. 2000. Genetic Drift in an Infinite Population: The Pseudohitchhiking Model. Genetics 155: 909–919.Google Scholar
  41. Gillois, Michel. 1996. Malécot Gustave né en 1911. In Dictionnaire du Darwinisme et de l’Evolution, ed. Patick Tort, 2768–2785. Paris: Presses Universitaires de France.Google Scholar
  42. Gillois, Michel. 2002. The Scientific Work of Gustave Malécot (1911-1998): Our Common Heritage. In Modern Developments in Theoretical Population Genetics: The Legacy of Gustave Malécot, ed. Montgomery Slatkin and Michel Veuille, 7–19. New York: Oxford University Press.Google Scholar
  43. Grodwohl, Jean-Baptiste. 2017. The Theory Was Beautiful Indeed: Rise, Fall and Circulation of Maximizing Methods in Population Genetics (1930–1980). Journal of the History of Biology 50 (3): 571–608.CrossRefGoogle Scholar
  44. Hagedoorn, A.L., and A.C. Hagedoorn-Vorstheuvel La Brand. 1921. The Relative Value of the Processes Causing Evolution. The Hague, Netherlands: Martinus Nijhoff.CrossRefGoogle Scholar
  45. Haldane, J.B.S. 1932. The Causes of Evolution. Green and Co: Longmans.Google Scholar
  46. Harris, Harry. 1966. Enzyme Polymorphism in Man. Proceedings of the Royal Society of London B 164: 298–310.CrossRefGoogle Scholar
  47. Hey, Jody, and Rasmus Nielsen. 2004. Multilocus Methods for Estimating Population Sizes, Migration Rates and Divergence Time, with Applications to the Divergence of Drosophila pseudoobscura and D. persimilis. Genetics 167: 747–760.CrossRefGoogle Scholar
  48. Hubby, J.L., and Richard C. Lewontin. 1966. A Molecular Approach to the Study of Genic Heterozygosity in Natural Populations. I. The Number of Alleles at Different Loci in Drosophila pseudoobscura. Genetics 54: 546–595.Google Scholar
  49. Hudson, Richard R. 1983. Properties of a Neutral Allele Model with Intragenic Recombination. Theoretical Population Biology 23: 183–201.CrossRefGoogle Scholar
  50. Hudson, Richard R., Martin Kreitman, and Montserrat Aguadé. 1987. A Test of Neutral Molecular Evolution Based on Nucleotide Data. Genetics 116: 153–159.Google Scholar
  51. Huxley, Julian S. 1942. Evolution: The Modern Synthesis. London: Allen & Unwin.Google Scholar
  52. Ishida, Yoichi. 2009. Sewall Wright and Gustave Malécot on Isolation by Distance. Philosophy of Science 76: 784–796.CrossRefGoogle Scholar
  53. Johannsen, Wilhelm. 1911. The Genotype Conception of Heredity. The American Naturalist. 45: 129–159.CrossRefGoogle Scholar
  54. Kaplan, Noran L., Richard R. Hudson, and Charles H. Langley. 1989. The “Hitchhiking Effect” Revisited. Genetics 123: 887–899.Google Scholar
  55. Keith, Tim P. 1983. Frequency Distribution of Esterase-5 Alleles in Two Populations of Drosophila pseudoobscura. Genetics 105: 135–155.Google Scholar
  56. Keith, Tim P., Liza Brooks, Rochard C. Lewontin, Juan C. Martinez-Cruzado, and Donna Larson Rigby. 1985. Nearly Identical Allelic Distributions of Xanthine dehydrogenase in Two Populations of Drosophila pseudoobscura. Molecular Biology and Evolution 2: 206–216.Google Scholar
  57. Kempthorne, Oscar. 1957. An Introduction to Genetic Statistics. New-York: Wiley.Google Scholar
  58. Kimura, Motoo. 1964. Diffusion Models in Population Genetics. London: Methuen & Co.Google Scholar
  59. Kimura, Motoo. 1968. Genetic Variability Maintained in a Finite Population Due to Mutational Production of Neutral and Nearly-Neutral Isoalleles. Genetcal Research 11: 247–269.CrossRefGoogle Scholar
  60. Kimura, Motoo. 1969. The Number of Heterozygous Nucleotide Sites Maintained in a Finite Population Due to Steady Flux of Mutations. Genetics 61: 893–903.Google Scholar
  61. Kimura, Motoo. 1983. The Neutral Theory of Molecular Evolution. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  62. Kimura, Motoo, and James F. Crow. 1964. The Number of Alleles That Can Be Maintained in a Finite Population. Genetics 49: 725–738.Google Scholar
  63. Kimura, Motoo, and Tomoko Ohta. 1971. Protein Polymorphism as a Phase of Molecular Evolution. Nature 229 (5285): 467–469.CrossRefGoogle Scholar
  64. Kimura, Motoo, and G.H. Weiss. 1964. The Stepping Stone Model of Population Structure and the Decrease of Genetic Correlation with Distance. Genetics 49: 561–576.Google Scholar
  65. King, J.L., and T. Ohta. 1975. Polyallelic Mutational Equilibria. Genetics 1979: 681–691.Google Scholar
  66. Kingman, John F.C. 1982. The Coalescent. Stochastic Processes and their Applications 13: 235–248.CrossRefGoogle Scholar
  67. Kingman, John F.C. 2000. Origins of the Coalescent: 1974–1982. Genetics 156: 1461–1463.Google Scholar
  68. Kolmogorov, A. 1935. Deviations from Hardy’s Formula in Partial Isolation. Comptes rendus de l’Académie des sciences de l’URSS 3: 129–132.Google Scholar
  69. Kreitman, Martin. 1983. Nucleotide Polymorphism at the Alcohol Dehydrogenase Locus of Drosophila melanogaster. Nature 304: 412–417.CrossRefGoogle Scholar
  70. Lamotte, Maxime. 1951. Recherches sur la structure génétique des populations naturelles de Cepaea nomoralis (L). Bulletin Biologique de France et de Belgique 35: 1–239.Google Scholar
  71. Lamotte, Maxime. 1959. Polymorphism of Natural Populations of Cepaea nemoralis. In Genetics and Twentieth Century Darwinism, Cold Spring Harbor Symposia on Quantitative Biology, vol. 24, ed. M. Demerec, 65–86. Cold Spring Harbor, New York: Cold Spring Harbor Press.Google Scholar
  72. Lewontin, Richard C. 1974. The Genetic Basis of Evolutionary Change. New York, London: Columbia University Press.Google Scholar
  73. Lewontin, Richard C. 1985. Population Genetics. Annual Review of Genetics 19: 81–102.CrossRefGoogle Scholar
  74. Lewontin, Richard C. 1987. Polymorphism and Heterosis: Old Wine in New Bottles and Vice Versa. Journal of the History of Biology 20: 337–349.CrossRefGoogle Scholar
  75. Lewontin, Richard C. 1997. Dobzhansky’s Genetics and the Origin of Species: Is It Still Relevant? Genetics 147: 351–355.Google Scholar
  76. Lewontin, Richard C., and J.L. Hubby. 1966. A Molecular Approach to the Study of Genic Heterozygosity in Nnatural Populations. II. Amount of Variation and Degree of Heterozygosity in Natural Populations of Drosophila pseudoobscura. Genetics 54: 595–609.Google Scholar
  77. Lewontin, Richard C., and J. Krakauer. 1973. Distribution of Gene Frequency as a Test of the Theory of the Selective Neutrality of Polymorphisms. Genetics 74: 175–195.Google Scholar
  78. Malécot, Gustave. 1946. La consanguinité dans une population limitée. Comptes-rendus Académie Sciences. Paris. 222: 241–243.Google Scholar
  79. Malécot, Gustave. 1948. Les Mathématiques de l’Hérédité. Paris: Masson et Cie.Google Scholar
  80. Malécot, Gustave. 1949. Les processus statistiques de la génétique. Colloque international Centre National de la Recherche Scientifique 13: 121–126.Google Scholar
  81. Malécot, Gustave. 1959. Les Modèles Stochastiques en Génétique de Population. Publications de l’Institut de Statistique de l’Université de Paris 8: 173–210.Google Scholar
  82. Maynard Smith, John. 1982. Evolution and the Theory of Games. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  83. Maynard-Smith, John, and J. Haigh. 1976. The Hitch-Hiking Effect of a Favourable Gene. Genetic Research 23: 23–35.CrossRefGoogle Scholar
  84. Mayr, Ernst. 1959. Where are We? In Genetics and Twentieth Century Darwinism, Cold Spring Harbor Symposia on Quantitative Biology, vol. 24, ed. M. Demerec, 1–14. Cold Spring Harbor, NY: Cold Spring Harbor Press.Google Scholar
  85. Mayr, Ernst. 1963. Animal Species and Evolution. Cambridge, MA: Harvard University Press.CrossRefGoogle Scholar
  86. Millstein, Roberta. 2002. Are Random Drift and Natural Selection Conceptually Distinct? Biology and Philosophy 17: 33–53.CrossRefGoogle Scholar
  87. Millstein, Roberta. 2008. Distinguishing Drift and Selection Empirically: The Great Snail Debate of the 1950s. Journal of the History of Biology 41: 339–367.CrossRefGoogle Scholar
  88. Millstein, Roberta. 2009. Concepts of Drift and Selection in the Great Snail Debate of the 1950s and early 1960s. Transactions of the American Philosophical Society 99: 271–298.Google Scholar
  89. Morgan, T.H., A.H. Sturtevant, H.J. Muller, and C.B. Bridges. 1923. The Mechanism of Mendelian Heredity, Revised ed. New York: Henry Holt.Google Scholar
  90. Muller, Hermann J. 1932. Some Genetic Aspects of Sex. American Naturalist 66: 118–138.CrossRefGoogle Scholar
  91. Nagylaki, Thomas. 1989. Gustave Malécot and the Transition from Classical to Modern Population Genetics. Genetics 121: 103–118.Google Scholar
  92. Nei, Masatochi. 1975. Molecular Population Genetics and Evolution. Amsterdam and Oxford: North-Holland Publishing Company.Google Scholar
  93. Nei, Masatochi, and T. Maruyama. 1975. Letters to the Editors: Lewontin-Krakauer Test for Neutral Genes. Genetics 80: 395.Google Scholar
  94. Nevo, Eviatar, A. Beiles, and R. Ben-Shlomo. 1984. The Evolutionary Significance of Genetic Diversity: Ecological, Demographic and Life History Correlates. In Lecture Notes in Biomathematics, Vol. 53: Evolutionary Dynamics of Genetic Diversity, ed. G.S. Mani, 13–213. Berlin: Springer.CrossRefGoogle Scholar
  95. Nielsen, Rasmus. 2001. Statistical Tests of Selective Neutrality in the Age of Genomics. Heredity 86: 641–647.CrossRefGoogle Scholar
  96. Nielsen, Rasmus, and John Wakeley. 2001. Distinguishing Migration from Isolation. A Markov Chain Monte Carlo Approach. Genetics 158: 885–896.Google Scholar
  97. Nordborg, Magnus, and Stephen M. Krone. 2002. Separation of Time Scales and Convergence to the Coalescent in Structured Populations. In Modern Developments in Theoretical Population Genetics: The Legacy of Gustave Malécot, ed. Montgomery Slatkin and Michel Veuille, 194–232. New York: Oxford University Press.Google Scholar
  98. Nurminsky, Dimitry (ed.). 2005. Selective Sweeps. Georgetown, TX: Landes Bioscience.Google Scholar
  99. O’Brien, S.J., D.E. Wildt, D. Goldman, C.R. Merril, and M. Bush. 1983. The Cheetah is Depauperate in Genetic Variation. Science 4609: 459–462.CrossRefGoogle Scholar
  100. Ohta, Tomoko. 1972. Population Size and Rate of Evolution. Journal of Molecular Evolution 1: 305–314.CrossRefGoogle Scholar
  101. Ohta, Tomoko. 1973. Slightly Deleterious Mutant Substitutions in Evolution. Nature 246: 96–98.CrossRefGoogle Scholar
  102. Ohta, Tomoko. 1974. Mutational Pressure as the Main Cause of Molecular Evolution and Polymorphism. Nature 252: 351–354.CrossRefGoogle Scholar
  103. Ohta, Tomoko. 1976. Role of Very Slightly Deleterious Mutations in Molecular Evolution and Polymorphism. Theoretical Population Biology 19: 254–275.CrossRefGoogle Scholar
  104. Provine, William B. 1971. The Origins of Theoretical Population Genetics. Chicago, IL: University of Chicago Press.Google Scholar
  105. Provine, William B. 1986. Sewall Wright and Evolutionary Biology. Chicago, IL: University of Chicago Press.Google Scholar
  106. Provine, William B. 1991. The Neutral Theory of Evolution in Historical Perspective. In Population Biology of Genes and Molecules, ed. B. Takahat and J. Crow, 17–31. Tokyo: Bayfukan.Google Scholar
  107. Provine, William B. 1996. The Fisher-Wright Controversy. In The Founders of Evolutionary Genetics: A Centennial Appraisal, ed. Sahotra Sarkar, 201–229. Dordrecht: Kluwer.Google Scholar
  108. Przeworski, Molly, Graham Coop, and Jeffrey D. Wall. 2005. The Signature of Positive Selection on Standing Genetic Variation. Evolution 59: 2312–2323.CrossRefGoogle Scholar
  109. Riley, Margaret, Suzan Kaplan, and Michel Veuille. 1992. Nucleotide Polymorphism at the Xanthine Dehydrogenase Locus in Drosophila pseudoobscura. Molecular Biology and Evolution 9: 56–69.Google Scholar
  110. Rogers, Alan R., and Henry Harpending. 1992. Population Growth Makes Waves in the Distribution of Pairwise Genetic Differences. Molecular Biology and Evolution 9: 552–569.Google Scholar
  111. Sheppard, Philip. 1951. Fluctuations in the Selective Value of Certain Phenotypes in the Polymorphic Land Snail Cepaea nemoralis (L.). Heredity 5: 115–134.Google Scholar
  112. Slatkin, Montgomery. 1985. Gene Flow in Natural Populations. Annual Review of Ecology and Systematics 16: 393–430.CrossRefGoogle Scholar
  113. Slatkin, Montgomery, and Michel Veuille. 2002. Modern Developments in Theoretical Population Genetics: The Legacy of Gustave Malécot. New York: Oxford University Press.Google Scholar
  114. Stephens, M. 2001. Inference under Coalescent. In Handbook of Statistical Genetics, ed. D.J. Balding, M. Bishop, and C. Cannings, 213–238. Chichester, WS: Wiley.Google Scholar
  115. Tajima, Fumio. 1983. Evolutionary Relationship of DNA Sequences in Finite Populations. Genetics 105: 437–460.Google Scholar
  116. Tajima, Fumio. 1989. Statistical Method for Testing the Neutral Mutation Hypothesis by DNA Polymorphism. Genetics 123: 585–595.Google Scholar
  117. Tavaré, Simon, D.J. Balding, R.C. Griffiths, and P. Donnelly. 1997. Inferring Coalescence Times from DNA Sequence Data. Genetics 145: 505–518.Google Scholar
  118. Veuille, Michel, and Lynn M. King. 1995. Molecular Bases of Polymorphism at the Esterase-5B Locus of Drosophila pseudoobscura. Genetics 141: 255–262.Google Scholar
  119. Wakeley, John. 1999. Non-Equilibrium Migration in Human History. Genetics 153: 1863–1871.Google Scholar
  120. Watterson, G.A. 1974. The Sampling Theory of Selectively Neutral Alleles. Advances in Applied Probability 6: 463–488.CrossRefGoogle Scholar
  121. Watterson, G.A. 1975. On the Number of Segregating Sites in Genetical Models without Recombination. Theoretical Population Biology 7: 256–276.CrossRefGoogle Scholar
  122. Watterson, G.A. 1978. Homozygosity Test of Neutrality. Genetics 88: 405–417.Google Scholar
  123. Weismann, August. 1886. Significance of Sexual Reproduction in the Theory of Natural Selection. In Essays upon Heredity and Kindred Biological Problems, vol. 1, 2nd ed, ed. Edward B. Poulton, Selmar Schönland, and Arthur E. Shipley, 257–342. Oxford: Clarendon Press.Google Scholar
  124. Whitlock, Michael C., and David E. McCauley. 1999. Indirect Measures of Gene Flow and Migration: FST ≠ 1/(4Nm + 1). Heredity 82: 117–125.CrossRefGoogle Scholar
  125. Wright, Sewall. 1931. Evolution in Mendelian Populations. Genetics 16: 97–159.Google Scholar
  126. Wright, Sewall. 1938. The Distribution of Gene Frequencies under Irreversible Mutation. Proceedings of the National Academy of Sciences USA 24: 253–259.CrossRefGoogle Scholar
  127. Wright, Sewall. 1939. Statistical Genetics in Relation to Evolution. Paris: Hermann & Co.Google Scholar
  128. Wright, Sewall. 1943. Isolation by Distance. Genetics 28: 114–138.Google Scholar
  129. Wright, Sewall. 1969. Evolution and the Genetics of Populations: Volume 2, The Theory of Gene Frequencies. Chicago, IL: University of Chicago Press.Google Scholar
  130. Wright, Sewall. 1977. Evolution and the Genetics of Populations: Volume 3, Experimental Results and Evolutionary Deductions. Chicago, IL: University of Chicago Press.Google Scholar
  131. Wright, Sewall. 1980. Genic and Organismic Evolution. Evolution 34: 825–843.CrossRefGoogle Scholar
  132. Yamazaki, T., and T. Maruyama. 1972. Evidence for the Neutral Hypothesis of Protein Polymorphism. Science 178 (4056): 56–58CrossRefGoogle Scholar
  133. Zuckerkandl, Émile, and Linus Pauling. 1965. Evolutionary Divergence and Convergence of Proteins. In Evolving Genes and Proteins, ed. V. Bryson and H.J. Vogel, 97–166. New York and London: Academic Press.CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Institut Systématique Évolution Biodiversité (ISYEB, UMR 7205, CNRS, EPHE, MNHN, UPMC), Ecole Pratique des Hautes Etudes, Université Paris Sciences LettresParisFrance

Personalised recommendations