Journal of the History of Biology

, Volume 43, Issue 4, pp 623–660 | Cite as

Collecting, Comparing, and Computing Sequences: The Making of Margaret O. Dayhoff’s Atlas of Protein Sequence and Structure, 1954–1965

Article

Abstract

Collecting, comparing, and computing molecular sequences are among the most prevalent practices in contemporary biological research. They represent a specific way of producing knowledge. This paper explores the historical development of these practices, focusing on the work of Margaret O. Dayhoff, Richard V. Eck, and Robert S. Ledley, who produced the first computer-based collection of protein sequences, published in book format in 1965 as the Atlas of Protein Sequence and Structure. While these practices are generally associated with the rise of molecular evolution in the 1960s, this paper shows that they grew out of research agendas from the previous decade, including the biochemical investigation of the relations between the structures and function of proteins and the theoretical attempt to decipher the genetic code. It also shows how computers became essential for the handling and analysis of sequence data. Finally, this paper reflects on the relationships between experimenting and collecting as two distinct “ways of knowing” that were essential for the transformation of the life sciences in the twentieth century.

Keywords

bioinformatics natural history molecular biology database protein sequences computers ways of knowing 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abir-Am, Pnina. 1992. ‘The Politics of Macromolecules Molecular Biologists, Biochemists, and Rethoric.’ Osiris 7: 164–191.CrossRefGoogle Scholar
  2. Allen, Garland E. 1978. Life Science in the Twentieth Century. Cambridge/London:Cambridge University Press.Google Scholar
  3. Anfinsen, Christian B. 1959. The Molecular Basis of Evolution. New York:Wiley.Google Scholar
  4. Anfinsen, Christian B, Åqvist, Stig EV, Cooke, Juanita P, Jönsson, Börje. 1959. ‘A Comparative Study of the Structures of Bovine and Ovine Pancreatic Ribonucleases.’ Journal of Biological Chemistry 234(5): 1118–1123.Google Scholar
  5. Anonymous. 1962. ‘Computing in the University.’ Datamation 8: 27–30.Google Scholar
  6. Aronson, Jay D. 2002. ‘‘Molecules and Monkeys’: George Gaylord Simpson and the Challenge of Molecular Evolution.’ History Philosophy of Life Sciences 24(3–4): 441–465.CrossRefGoogle Scholar
  7. Aspray, William, Williams, Bernard O. 1994. ‘Arming American Scientists – NSF and the Provision of Scientific Computing Facilities for Universities, 1950–1973.’ IEEE Annals of the History of Computing 16(4): 60–74.CrossRefGoogle Scholar
  8. Baldwin, Ernest. 1937. An Introduction to Comparative Biochemistry. Cambridge:The University Press.Google Scholar
  9. Baldwin, Ernest. 1966. An Introduction to Comparative Biochemistry. Cambridge:The University Press.Google Scholar
  10. Basilio, Carlos, Wahba, Albert J, Lengyel, Peter, Speyer, Joseph F, Ochoa, Severo. 1962. ‘Synthetic Polynucleotides and the Amino Acid Code. V.’ Proceedings National Academy Science 48: 613–616.CrossRefGoogle Scholar
  11. Benson, Keith R. 1988. ‘From Museum Research to Laboratory Research: The Transformation of Natural History into Academic Biology.’ Ronald Rainger, Keith R Benson, Jane Maienschein (eds.), The American Development of Biology. Philadelphia:University of Pennsylvania Press.Google Scholar
  12. Bernhard, SA, Bradley, DF, Duda, WL. 1963. ‘Automatic Determination of Amino Acid Sequences.’ IBM Journal of Research and Development 7(3): 246–251.CrossRefGoogle Scholar
  13. Blombäck, Birger, Blombäck, Margareta, Grondahl, Nils Jakob. 1965. ‘Studies on Fibrinopeptides from Mammals.’ Acta Chemica Scandinavica 19: 1789–1791.CrossRefGoogle Scholar
  14. Bowler, Peter J, Morus, Iwan Rhys. 2005. Making Modern Science: A Historical Survey. Chicago:University Of Chicago Press.Google Scholar
  15. Brandt, Christina. 2004. Metapher und Experiment: von der Virusforschung zum genetischen Code. Göttingen:Wallstein.Google Scholar
  16. Brenner, Sydney. 1957. ‘On the Impossibility of All Overlapping Triplet Codes in Information Transfer from Nucleic Acid to Proteins.’ Proceedings National Academy Science 43(8): 687–694.CrossRefGoogle Scholar
  17. Brown, H, Sanger, Frederick, Kitai, Ruth. 1955. ‘The Structure of Pig and Sheep Insulins.’ Biochemical Journal 60(1–4): 556–565.Google Scholar
  18. Chargaff, Erwin. 1955. ‘Isolation and Composition of the Desoxypentose Nucleic Acids and of the Corresponding Nucleoproteins.’ Erwin Chargaff, JN Davidson (eds.), The Nucleic Acids: Chemistry and Biology. New York:Academic Press.Google Scholar
  19. Coleman, William. 1971. Biology in the Nineteenth Century: Problems of Form, Function and Transformation. Cambridge:Cambridge University Press.Google Scholar
  20. Creager, Angela NH. 2002. The Life of a Virus: Tobacco Mosaic Virus as an Experimental Model, 1930–1965. Chicago:University of Chicago Press.Google Scholar
  21. Dayhoff, Margaret O. 1964. ‘Computer Search for Active Site Configurations.’ Journal of the American Chemical Society 86(11): 2295–2297.CrossRefGoogle Scholar
  22. Dayhoff, Margaret O. 1969. ‘Computer Analysis of Protein Evolution.’ Scientific American 221: 86–95.CrossRefGoogle Scholar
  23. Dayhoff, Margaret O. and Ledley, Robert S. 1962. “Comprotein: A Computer Program to Aid Primary Protein Structure Determination.” Proceedings of the Fall Joint Computer Conference. Santa Monica: American Federation of Information Processing Societies.Google Scholar
  24. Dayhoff, Margaret O, Lippincott, ER, Eck, Richard V. 1964. ‘Thermodynamic Equilibria in Prebiological Atmospheres.’ Science 146: 1461–1464.CrossRefGoogle Scholar
  25. Dayhoff, Margaret O, Eck, Richard V, Chang, Marie A, Sochard, Minnie R. 1965. Atlas of Protein Sequence and Structure. Silver Spring:National Biomedical Research Foundation.Google Scholar
  26. Dayhoff, Margaret O, Eck, Richard V, Lippincott, ER, Sagan, Carl. 1967. ‘Venus: Atmospheric Evolution.’ Science 155(3762): 556–558.CrossRefGoogle Scholar
  27. de Chadarevian, Soraya. 1996. ‘Sequences, Conformation, Information: Biochemists and Molecular Biologists in the 1950s.’ Journal of the History of Biology 29(3): 361–386.CrossRefGoogle Scholar
  28. de Chadarevian, Soraya. 1998. ‘Following Molecules: Haemoglobin Between the Clinic and the Laboratory.’ Soraya de Chadarevian, Kamminga Harmke (eds.), Molecularizing Biology and Medicine: New Practices and Alliances, 1910s–1970s. Amsterdam:Harwood Academic Publishers.CrossRefGoogle Scholar
  29. de Chadarevian, Soraya. 1999. ‘Protein Sequencing and the Making of Molecular Genetics.’ Trends in Biochemical Sciences 24: 203–206.CrossRefGoogle Scholar
  30. de Chadarevian, Soraya. 2002. Designs for Life. Molecular Biology after World War II. Cambridge:Cambridge University Press.Google Scholar
  31. de Solla Price, Derek J. 1963. Little Science, Big Science. New York:Columbia University Press.Google Scholar
  32. Dietrich, Michael R. 1994. ‘The Origins of the Neutral Theory of Molecular Evolution.’ Journal of the History of Biology 27: 21–59.CrossRefGoogle Scholar
  33. Dietrich, Michael R. 1998. ‘Paradox and Persuasion: Negotiating the Place of Molecular Evolution Within Evolutionary Biology.’ Journal of the History of Biology 31: 85–111.CrossRefGoogle Scholar
  34. Doolittle, Russell F, Blombäck, Birger. 1964. ‘Amino-Acid Sequence Investigations of Fibrinopeptides from Various Mammals: Evolutionary Implications.’ Nature 202: 147–152.CrossRefGoogle Scholar
  35. Doolittle, Russell F, Singer, Seymour J, Metzger, Henry. 1966. ‘Evolution of Immunoglobulin Polypeptide Chains: Carboxy-Terminal of an IgM Heavy Chain.’ Science 154(756): 1561–1562.CrossRefGoogle Scholar
  36. Eck, Richard V. 1961. ‘Non-Randomness in Amino-Acid ‘Alleles’.’ Nature 191: 1284–1285.CrossRefGoogle Scholar
  37. Eck, Richard V. 1962a. ‘A Simplified Strategy for Sequence Analysis of Large Proteins.’ Nature 193: 241–243.CrossRefGoogle Scholar
  38. Eck, Richard V. 1962b. ‘I. The Protein Cryptogram: I Non-Random Occurrence of Amino Acid “Alleles”.’ Journal of Theoretical Biology 2: 139–151.CrossRefGoogle Scholar
  39. Eck, Richard V. 1964. “Cryptogrammic Detection of a Pattern in Amino Acid “Alleles”: Its Use in Tracing the Evolution of Proteins.” Proceedings on the 17th Annual Conference on Engineering in Medicine and Biology, Vol. 6, p. 115.Google Scholar
  40. Eck, Richard V, Dayhoff, MO. 1966a. ‘Evolution of the Structure of Ferredoxin Based on Living Relics of Primitive Amino Acid Sequences.’ Science 152(3720): 363–366.CrossRefGoogle Scholar
  41. Eck, Richard V, Dayhoff, Margaret O. 1966b. Atlas of Protein Sequence and Structure. Silver Spring, MD:National Biomedical Research Foundation.Google Scholar
  42. Edwards, Paul N. 1996. The Closed World: Computers and the Politics of Discourse in Cold War America. Cambridge, MA:MIT Press.Google Scholar
  43. Elzen, Boelie. 1986. ‘Two Ultracentrifuges: A Comparative Study of the Social Construction of Artefacts.’ Social Studies of Science 16: 621–662.CrossRefGoogle Scholar
  44. Endersby, Jim. 2007. A Guinea Pig’s History of Biology. Cambridge:Harvard University Press.Google Scholar
  45. Farber, Paul Lawrence. 2000. Finding Order in Nature: The Naturalist Tradition from Linnaeus to E. O. Wilson. Baltimore/London:The Johns Hopkins University Press.Google Scholar
  46. Felsenstein, Joseph. 2004. Inferring Phylogenies. Sunderland, MA; Sinauer AssociatesGoogle Scholar
  47. Fitch, Walter M. 1964. ‘The Probable Sequence of Nucleotides in Some Codons.’ Proceedings National Academy Science 52: 298–305.CrossRefGoogle Scholar
  48. Fitch, Walter M. 1966a. ‘Evidence Suggesting a Partial, Internal Duplication in the Ancestral Gene for Heme-Containing Globins.’ Journal of Molecular Biology 16(1): 17–27.CrossRefGoogle Scholar
  49. Fitch, Walter M. 1966b. ‘The Relation Between Frequencies of Amino Acids and Ordered Trinucleotides.’ Journal of Molecular Biology 16(1): 1–8.CrossRefGoogle Scholar
  50. Fitch, Walter M, Margoliash, Emanuel. 1967. ‘Construction of Phylogenetic Trees.’ Science 155(760): 279–284.CrossRefGoogle Scholar
  51. Florkin, Marcel. 1944. L’évolution Biochimique. Paris:Masson & cie.Google Scholar
  52. Florkin, Marcel. 1949. Biochemical Evolution. New York:Academic Press.Google Scholar
  53. Francoeur, Eric, Segal, Jérôme. 2004. ‘From Model Kits to Interactive Graphics.’ S de Chadarevian, N Hopwood (eds.), Models: The Third Dimension of Science. Stanford, CA:Stanford University Press.Google Scholar
  54. Gamow, George. 1954. ‘Possible Relation Between Desoxyribonucleic Acid and Protein Structure.’ Nature 173: 318.CrossRefGoogle Scholar
  55. Gamow, George, Metropolis, Nicolas. 1954. ‘Numerology of Polypeptide Chains.’ Science 120(3124): 779–780.Google Scholar
  56. Gamow, George, Rich, Alexander, Yčas, Martynas. 1956. ‘The Problem of Information Transfer from the Nucleic Acids to Proteins.’ Advances in Biological and Medical Physics 4: 23–68.Google Scholar
  57. Gamow, George, Yčas, Martynas. 1955. ‘Statistical Correlation of Protein and Ribonucleic Acid Composition.’ Proceedings National Academy Science 41(12): 1011–1019.CrossRefGoogle Scholar
  58. Garcia-Sancho, Miguel. 2010, in press. “A New Insight into Sanger’s Development of Sequencing: From Proteins to DNA, 1943–1977.” Journal of the History of Biology.Google Scholar
  59. Gaudillière, Jean-Paul. 2002. Inventer La Biomédecine: La France, l’Amérique et la Production des Savoirs du Vivant: 1945–1965. Paris:La Découverte.Google Scholar
  60. Hagen, Joel B. 1999. ‘Naturalist, Molecular Biology, and the Challenge of Molecular Evolution.’ Journal of the History of Biology 32: 321–341.CrossRefGoogle Scholar
  61. Hagen, Joel B. 2000. ‘The Origins of Bioinformatics.’ Nature Reviews 1: 231–236.CrossRefGoogle Scholar
  62. Hagen, Joel B. 2001. ‘The Introduction of Computers into Systematic Research in the United States During the 1960s.’ Studies in the History and Philosophy of Biological and Biomedical Sciences 32(2): 291–314.CrossRefGoogle Scholar
  63. Harris, J Ieuan, Naughton, Michael A, Sanger, Frederick. 1956. ‘Species Differences in Insulin.’ Archives of Biochemistry and Biophysics 65(1): 427–438.CrossRefGoogle Scholar
  64. Hunt, John A, Ingram, Vernon M. 1958. ‘The Chemical Effects of Gene Mutations in Some Abnormal Human Haemoglobins.’ Albert Neuberger (ed.), Symposium on Protein Structure. New York:Wiley.Google Scholar
  65. Jardine, Nicholas, Secord, James A, Spary, Emma C (eds.). 1996. Cultures of Natural History. London/New York:Cambridge University Press.Google Scholar
  66. Jukes, Thomas H. 1962a. ‘Beta Lactoglobulins and Amino Acid Code.’ Biochemical and Biophysical Research Communications 7(4): 281–283.CrossRefGoogle Scholar
  67. Jukes, Thomas H. 1962b. ‘Possible Base Sequences in Amino Acid Code.’ Biochemical and Biophysical Research Communications 7(6): 497–502.CrossRefGoogle Scholar
  68. Jukes, Thomas H. 1962c. ‘Relations Between Mutations and Base Sequences in Amino Acid Code.’ Proceedings of the National Academy of Sciences of the United States of America 48(10): 1809–1815.CrossRefGoogle Scholar
  69. Jukes, Thomas H. 1963. ‘Some Recent Advances in Studies of the Transcription of the Genetic Message.’ Advances in Biological and Medical Physics 9: 1–41.Google Scholar
  70. Kay, Lily E. 1993. The Molecular Vision of Life. Caltech, the Rockefeller Foundation and the Rise of the New Biology. New York:Oxford University Press.Google Scholar
  71. Kay, Lily E. 1988. “Laboratory Technology and Biological Knowledge: The Tiselius Electrophoresis Apparatus, 1930–1945.” History and Philosophy of the Life Science 10:51–72.Google Scholar
  72. Kay, Lily E. 2000. Who Wrote the Book of Life. A History of the Genetic Code. Stanford:Sanford University Press.Google Scholar
  73. Keller, Evelyn Fox. 1992. Secrets of Life, Secrets of Death: Essays on Language, Gender, and Science. New York:Routledge.Google Scholar
  74. Keller, Evelyn Fox. 1995. Refiguring Life, Metaphors of Twentieth-Century Biology. New York:Columbia University Press.Google Scholar
  75. Keller, Evelyn Fox. 2000. The Century of the Gene. Cambridge:Harvard University Press.Google Scholar
  76. Kohler, Robert E. 1982. From Medical Chemistry to Biochemistry. The Making of a Biomedical Discipline. Cambridge:Cambridge University Press.Google Scholar
  77. Kohler, Robert E. 2002. Landscapes and Labscapes: Exploring the Lab-Field Border in Biology. Chicago:The University of Chicago Press.Google Scholar
  78. Ledley, Robert S. 1955. ‘Digital Computational Methods in Symbolic Logic, with Examples in Biochemistry.’ Proceedings of the National Academy of Sciences 41(7): 498–511.CrossRefGoogle Scholar
  79. Ledley, Robert S. 1959a. ‘Reasoning Foundations of Medical Diagnosis; Symbolic Logic, Probability, and Value Theory Aid Our Understanding of How Physicians Reason.’ Science 130(3366): 9–21.CrossRefGoogle Scholar
  80. Ledley, Robert S. 1959b. ‘Digital Electronic Computers in Biomedical Sciences.’ Science 130: 1225–1234.CrossRefGoogle Scholar
  81. Ledley, Robert S. 1960. ‘Letters to the Editor.’ Science 131(3399): 474–564.CrossRefGoogle Scholar
  82. Ledley, Robert S. 1965. Use of Computers in Biology and Medicine. New York/Saint Louis:McGraw-Hill.Google Scholar
  83. Ledley, Robert S, Lusted, LB. 1959. ‘Probability, Logic and Medical Diagnosis.’ Science 130(3380): 892–930.CrossRefGoogle Scholar
  84. Lengyel, Peter, Speyer, Joseph F, Ochoa, Severo. 1961. ‘Synthetic Polynucleotides and the Amino Acid Code.’ Proceedings of the National Academy of Sciences 47: 1936–1942.CrossRefGoogle Scholar
  85. Lengyel, Peter, Speyer, Joseph F, Basilio, Carlos, Ochoa, Severo. 1962. ‘Synthetic Polynucleotides and the Amino Acid Code. III.’ Proceedings of the National Academy of Sciences 48: 282–284.CrossRefGoogle Scholar
  86. Lenoir, Timothy. 1999. ‘Shaping Biomedicine as an Information Science.’ ME Bowden, TB Hahn, RV Williams (eds.), Proceedings of the 1998 Conference on the History and Heritage of Science Information Systems. Medford:Information Today.Google Scholar
  87. Light, Junnifer S. 1999. ‘When Computers Were Women.’ Technology and Culture 40(3): 455–483.Google Scholar
  88. Margoliash, Emanuel. 1963. ‘Primary Structure and Evolution of Cytochrome C.’ Proceedings of the National Academy of Sciences 50: 672–679.CrossRefGoogle Scholar
  89. Medical Research Council. 1965. Mathematics and Computer Science in Biology and Medicine. London:H. M. Stationery Office.Google Scholar
  90. Miles, Wyndham D. 1982. A History of the National Library of Medicine: The Nation’s Treasury of Medical Knowledge. Washington, DC:U.S. Department of Health and Human Services.Google Scholar
  91. Miller, Stanley L, Urey, Harold C. 1959. ‘Organic Compound Synthesis on the Primitive Earth.’ Science 130(3370): 245–251.CrossRefGoogle Scholar
  92. Moore, Stanford, Spackman, Darrel H, Stein, William H. 1958. ‘Automatic Recording Apparatus for Use in the Chromatography of Amino Acids.’ Federation Proceedings 17(4): 1107–1115.Google Scholar
  93. Morange, Michel. 2000. A History of Molecular Biology. Cambridge:Harvard University Press.Google Scholar
  94. Morgan, Gregory J. 1998. ‘Emile Zuckerkandl, Linus Pauling, and the Molecular Evolutionary Clock, 1959–1965.’ Journal of the History of Biology 31: 155–178.CrossRefGoogle Scholar
  95. November, Joseph A. 2004. ‘LINC: Biology’s Revolutionary Little Computer.’ Endeavour 28(3): 125–131.CrossRefGoogle Scholar
  96. November, Joseph A. 2006. Digitalizing Life: The Introduction of Computers to Biology and Medicine. Doctoral Thesis, Princeton University.Google Scholar
  97. Nyhart, Lynn K. 1996. ‘Natural History and the ‘New’ Biology.’ Nicholas Jardine, James A Secord, C Spary Emma (eds.), Cultures of Natural History. London:Cambridge University Press.Google Scholar
  98. Oakley, Margaret B, Kimball, George E. 1949. ‘Punched Card Calculation of Resonance Energies.’ Journal of Chemical Physics 17(8): 706–717.CrossRefGoogle Scholar
  99. Paléus, Sven, Tuppy, Hans. 1959. ‘A Hemopeptide from a Tryptic Hydrolysate of Rhodospirillum-Rubrum Cytochrome-C.’ Acta Chemica Scandinavica 13(4): 641–646.CrossRefGoogle Scholar
  100. Pickstone, John V. 1993. ‘Ways of Knowing: Towards a Historical Sociology of Science, Technology and Medicine.’ British Journal for the History of Science 26: 433–458.CrossRefGoogle Scholar
  101. Pickstone, John V. 2007. ‘Working Knowledges Before and After Circa 1800. Practices and Disciplines in the History of Science, Technology and Medicine.’ Isis 98: 489–516.CrossRefGoogle Scholar
  102. Rasmussen, Nicolas. 1997. Picture Control the Electron Microscope and the Transformation of Biology in America, 1940–1960. Stanford:Stanford University Press.Google Scholar
  103. Rogers, Frank B. 1964. ‘The Development of MEDLARS.’ Bulletin of the Medical Library Association 52: 150–151.Google Scholar
  104. Sanger, Frederick. 1949. ‘Species Differences in Insulins.’ Nature 164(4169): 529.CrossRefGoogle Scholar
  105. Sanger, Frederick. 1988. ‘Sequences, Sequences, and Sequences.’ Annual Review of Biochemistry 57: 1–28.CrossRefGoogle Scholar
  106. Segal, Jérôme. 2003. Le Zéro et le Un. Histoire de la Notion Scientifique d’Information. Paris:Syllepse.Google Scholar
  107. Shapiro, Marvin B, Merril, Carl R, Bradley, Dan F, Mosimann, James E. 1965. ‘Reconstruction of Protein and Nucleic Acid Sequences: Alamine Transfer Ribonucleic Acid”.’ Science 150(698): 918–921.CrossRefGoogle Scholar
  108. Smith, Emil L. 1962a. ‘Nucleotide Base Coding and Amino Acid Replacements in Proteins.’ Proceedings of the National Academy of Sciences 48: 677–684.CrossRefGoogle Scholar
  109. Smith, Emil L. 1962b. ‘Nucleotide Base Coding and Amino Acid Replacements in Proteins. II.’ Proceedings of the National Academy of Sciences 48: 859–864.CrossRefGoogle Scholar
  110. Sommer, Marianne. 2008. ‘History in the Gene: Negotiations Between Molecular and Organismal Anthropology.’ Journal of the History of Biology 43: 473–528.CrossRefGoogle Scholar
  111. Spath, Susan B. 1999. C. B. van Niel and the Culture of Microbiology, 1920–1965. Doctoral Thesis, Berkeley University.Google Scholar
  112. Speyer, Joseph F, Lengyel, Peter, Basilio, Carlos, Ochoa, Severo. 1962a. ‘Synthetic Polynucleotides and the Amino Acid Code. II.’ Proceedings of the National Academy of Sciences 48: 63–68.CrossRefGoogle Scholar
  113. Speyer, Joseph F, Lengyel, Peter, Basilio, Carlos, Ochoa, Severo. 1962b. ‘Synthetic Polynucleotides and the Amino Acid Code. IV.’ Proceedings of the National Academy of Sciences 48: 441–448.CrossRefGoogle Scholar
  114. Stacy, Ralph W, Waxman, Bruce D. 1965. Computers in Biomedical Research. New York:Academic Press.Google Scholar
  115. Sterling, Theodor D, Pollack, Seymour V. 1965. Computers and the Life Sciences. New York:Columbia University Press.Google Scholar
  116. Strasser, Bruno J. 2006a. ‘Collecting and Experimenting: The Moral Economies of Biological Research, 1960s–1980s.’ Preprints of the Max-Planck Institute for the History of Science 310: 105–123.Google Scholar
  117. Strasser, Bruno J. 2006b. ‘A World in One Dimension: Linus Pauling, Francis Crick and the Central Dogma of Molecular Biology.’ History and Philosophy of the Life Science 28: 491–512.Google Scholar
  118. Strasser, Bruno J. 2006c. La fabrique d’une nouvelle science: La biologie moléculaire à l’âge atomique (1945–1964). Florence:Olschki.Google Scholar
  119. Strasser, Bruno J. 2008. ‘Genbank: Natural History in the 21st Century?’ Science 322: 537–538.CrossRefGoogle Scholar
  120. Strasser, Bruno J. 2010, in press. “Laboratories, Museums, and the Comparative Perspective: Alan A. Boyden’s Quest for Objectivity in Serological Taxonomy, 1925–1962.” Historical Studies in the Natural Sciences.Google Scholar
  121. Strick, James E. 2004. ‘Creating a Cosmic Discipline: The Crystallization and Consolidation of Exobiology, 1957–1973.’ Journal of the History of Biology 37(1): 131–180.CrossRefGoogle Scholar
  122. Suárez-Diaz, Edna. 2007. ‘The Rhetoric of Informational Molecules: Authority and Promises in the Early Study of Molecular Evolution.’ Science in Context 20(4): 649–677.CrossRefGoogle Scholar
  123. Suárez-Díaz, Edna. 2009. ‘Molecular Evolution: Concepts and the Origin of Disciplines.’ Studies in the History and Philosophy of Biological and Biomedical Sciences 40(1): 43–53.CrossRefGoogle Scholar
  124. Suárez-Díaz, Edna, Anaya-Muñoz, Victor H. 2008. ‘History, Objectivity, and the Construction of Molecular Phylogenies.’ Studies in the History and Philosophy of Biological and Biomedical Sciences 39(4): 451–468.CrossRefGoogle Scholar
  125. Tsugita, Akira, Fraenkel-Conrat, Heinz. 1960. ‘The Amino Acid Composition and C-Terminal Sequence of a Chemically Evoked Mutant of TMV.’ Proceedings of the National Academy of Sciences 46(5): 636–642.CrossRefGoogle Scholar
  126. Tuppy, Hans. 1958. ‘Über die Artspezificität der Proteinstruktur.’ Albert Neuberger (ed.), Symposium on Protein Structure. New York:Wiley, pp. 66–76..Google Scholar
  127. Tuppy, Hans. 1959. ‘Aminosaure-Sequenzen in Proteinen.’ Naturwissenschaften 46(2): 35–43.CrossRefGoogle Scholar
  128. Tuppy, Hans, Bodo, Gerhard. 1954. ‘Cytochrom c. III. Zur Frage der Artspezifität von Säugetier-Cytochrom c.’ Monatshefte für Chemie 85(5): 1182–1186.CrossRefGoogle Scholar
  129. Tuppy, Hans, Dus, K. 1958. ‘Eine Untersuchung über Cytochrom-c aus Hefe.’ Monatshefte für Chemie 89(3): 407–417.CrossRefGoogle Scholar
  130. Tuppy, Hans, Paléus, Sven. 1955. ‘Study of a Peptic Degradation Product of Cytochrome-C.1. Purification and Chemical Composition.’ Acta Chemica Scandinavica 9(3): 353–364.CrossRefGoogle Scholar
  131. Watson, James D. 2001. Genes, Girls and Gamow. Oxford:Oxford University Press.Google Scholar
  132. Wittmann, Heinz-Günter. 1960. ‘Comparison of the Tryptic Peptides of Chemically Induced and Spontaneous Mutants or Tobacco Mosaic Virus.’ Virology 12: 609–612.CrossRefGoogle Scholar
  133. Wolfe, Audra J. 2002. ‘Germs in Space. Joshua Lederberg, Exobiology, and the Public Imagination, 1958–1964.’ Isis 93: 183–205.CrossRefGoogle Scholar
  134. Yčas, Martinas. 1958. ‘The Protein Text.’ Hubert P Yockey (ed.), Symposium on Information Theory in Biology. New York:Pergamon Press.Google Scholar
  135. Yčas, Martinas. 1961. ‘Replacement of Amino Acids in Proteins.’ Journal of Theoretical Biology 1(2): 244.CrossRefGoogle Scholar
  136. Zuckerkandl, Emile, Pauling, Linus. 1962. ‘Molecular Disease, Evolution, and Genic Heterogeneity.’ M Kasha, B Pullman (eds.), Horizons in Biochemistry. New York:Academic Press.Google Scholar
  137. Zuckerkandl, Emile, Pauling, Linus. 1965. ‘Molecules as Documents of Evolutionary History.’ Journal of Theoretical Biology 8: 357–366.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  1. 1.Program in the History of Science and Medicine, Section for the History of MedicineYale UniversityNew HavenUSA

Personalised recommendations