Advertisement

Osteogenic and angiogenic characterization of mandible and femur osteoblasts

  • Xue Yang
  • Jun Jiang
  • Ling Zhou
  • Song Wang
  • Mengjiao He
  • Kai Luo
  • Yuling ChenEmail author
  • Xiongcheng XuEmail author
Original Paper

Abstract

Craniofacial autologous bone grafts offer superior outcomes to long bone grafts in the reconstruction of maxillofacial bone defects, but the mechanism responsible for this superiority has not yet been illustrated clearly. Osteoblasts play vital roles in bone development and regeneration. However, presently, only a few studies have compared the osteogenic ability of osteoblasts from craniofacial and long bones, and the results are contradictory. Additionally, the angiogenic characteristics of osteoblasts from these different bones remain unknown. We obtained osteoblasts from the rat mandible (MOBs) and femur (FOBs) to investigate their proliferative capacity and osteogenic potential, and using a co-culture system with human umbilical vein endothelial cells (HUVECs), we explored their angiogenic capabilities in vitro. FOBs exhibited higher alkaline phosphatase activity and increased matrix mineralization and expressed more osteogenic related marker genes, while MOBs proliferated at the highest rate and showed elevated expression of angiogenesis-related factors. Conditioned media from MOBs enhanced the expression of angiogenesis-related factors in HUVECs. Furthermore, the conditioned media generated from MOBs showed stronger promotion of proliferation, migration, and tube-like structure formation in HUVECs, suggesting that MOBs had a stronger pro-angiogenic effect on HUVECs than FOBs. Taken together, these results indicate that osteoblasts possess skeletal site-specific differences in osteogenic and angiogenic capabilities, and this might lead to a better understanding of the molecular impact of bone cells from different bone entities on maxillofacial bone reconstructions.

Keywords

Osteoblasts Mandible Femur Human umbilical vein endothelial cells Osteogenesis Angiogenesis 

Notes

Acknowledgements

This study was supported by National Natural Science Foundation of China (Grant No. 81870766), Joint Funds for the Innovation of Sciences and Technology, Fujian Province (Grant No. 2016Y9023), Medical Elite Cultivation Program of Fujian Province (Grant No. 2015-ZQN-ZD-28), and Startup Fund for Scientific Research, Fujian Medical University (Grant No. 2016QH079).

Compliance with ethical standards

Conflict of interest

The authors declare that there is no conflicts of interest regarding the publication of this manuscript.

References

  1. Aghaloo TL, Chaichanasakul T, Bezouglaia O, Kang B, Franco R, Dry SM, Atti E, Tetradis S (2010) Osteogenic potential of mandibular vs. long-bone marrow stromal cells. J Dent Res 89:1293–1298.  https://doi.org/10.1177/0022034510378427 CrossRefGoogle Scholar
  2. Ahluwalia A, Tarnawski AS (2012) Critical role of hypoxia sensor HIF-1α in VEGF gene activation. Implications for angiogenesis and tissue injury healing. Curr Med Chem 19:90–97  https://doi.org/10.2174/092986712803413944 CrossRefGoogle Scholar
  3. Akintoye SO, Lam T, Shi S, Brahim J, Collins MT, Robey PG (2006) Skeletal site-specific characterization of orofacial and iliac crest human bone marrow stromal cells in same individuals. Bone 38:758–768.  https://doi.org/10.1016/j.bone.2005.10.027 CrossRefGoogle Scholar
  4. Bugueno J, Li W, Salat P, Qin L, Akintoye SO (2017) The bone regenerative capacity of canine mesenchymal stem cells is regulated by site-specific multilineage differentiation. Oral Surg Oral Med Oral Pathol Oral Radiol 123:163–172.  https://doi.org/10.1016/j.oooo.2016.09.011 CrossRefGoogle Scholar
  5. Chai Y, Maxson RE Jr (2006) Recent advances in craniofacial morphogenesis. Dev Dyn 235:2353–2375.  https://doi.org/10.1002/dvdy.20833 CrossRefGoogle Scholar
  6. Coffin JD, Florkiewicz RZ, Neumann J, Mort-Hopkins T, Dorn GW, Lightfoot P, German R, Howles PN, Kier A, O’Toole BA et al (1995) Abnormal bone growth and selective translational regulation in basic fibroblast growth factor (FGF-2) transgenic mice. Mol Biol Cell 6:1861–1873.  https://doi.org/10.1091/mbc.6.12.1861 CrossRefGoogle Scholar
  7. Crespi R, Vinci R, Cappare P, Gherlone E, Romanos GE (2007) Calvarial versus iliac crest for autologous bone graft material for a sinus lift procedure: a histomorphometric study. Int J Oral Maxillofac Implants 22:527–532Google Scholar
  8. Deckers MM, van Bezooijen RL, van der Horst G, Hoogendam J, van der Bent C, Papaoulos SE, Löwik CW (2000) Bone morphogenetic proteins stimulate angiogenesis through osteoblast-derived vascular endothelial growth factor A. Endocrinology 143:1545–1553.  https://doi.org/10.1210/endo.143.4.8719 CrossRefGoogle Scholar
  9. Du Y, Jiang F, Liang Y, Wang Y, Zhou W, Pan Y, Xue M, Peng Y, Yuan H, Chen N, Jiang H (2016) The angiogenic variation of skeletal site-specific human BMSCs from same alveolar cleft patients: a comparative study. J Mol Histol 47:153–168.  https://doi.org/10.1007/s10735-016-9662-7 CrossRefGoogle Scholar
  10. Dumont DJ, Gradwohl G, Fong G-H, Puri MC, Gertsenstein M, Auerbach A, Breitman ML (1994) Dominant-negative and targeted null mutations in the endothelial receptor tyrosine kinase, tek, reveal a critical role in vasculogenesis of the embryo. Genes Dev 8:1897–1909.  https://doi.org/10.1101/gad.8.16.1897 CrossRefGoogle Scholar
  11. Everts V, Korper W, Hoeben KA, Jansen ID, Bromme D, Cleutjens KB, Heeneman S, Peters C, Reinheckel T, Saftig P, Beertsen W (2006) Osteoclastic bone degradation and the role of different cysteine proteinases and matrix metalloproteinases: differences between calvaria and long bone. J Bone Miner Res 21:1399–1408.  https://doi.org/10.1359/jbmr.060614 CrossRefGoogle Scholar
  12. Fakhry A, Ratisoontorn C, Vedhachalam C, Salhab I, Koyama E, Leboy P, Pacifici M, Kirschner RE, Nah H-D (2005) Effects of FGF-2/-9 in calvarial bone cell cultures: differentiation stage-dependent mitogenic effect, inverse regulation of BMP-2 and noggin, and enhancement of osteogenic potential. Bone 36:254–266.  https://doi.org/10.1016/j.bone.2004.10.003 CrossRefGoogle Scholar
  13. Ferrara N, Gerber HP, LeCouter J (2003) The biology of VEGF and its receptors. Nat Med 9:669–676.  https://doi.org/10.1038/nm0603-669 CrossRefGoogle Scholar
  14. Fuchs S, Hofmann A, Kirkpatrick C (2007) Microvessel-like structures from outgrowth endothelial cells from human peripheral blood in 2-dimensional and 3-dimensional co-cultures with osteoblastic lineage cells. Tissue Eng 13:2577–2588.  https://doi.org/10.1089/ten.2007.0022 CrossRefGoogle Scholar
  15. Hayes AJ, Huang WQ, Mallah J, Yang D, Lippman ME, Li LY (1999) Angiopoietin-1 and its receptor Tie-2 participate in the regulation of capillary-like tubule formation and survival of endothelial cells. Microvasc Res 58:224–237.  https://doi.org/10.1006/mvre.1999.2179 CrossRefGoogle Scholar
  16. Hofmann A, Ritz U, Verrier S, Eglin D, Alini M, Fuchs S, Kirkpatrick CJ, Rommens PM (2008) The effect of human osteoblasts on proliferation and neo-vessel formation of human umbilical vein endothelial cells in a long-term 3D co-culture on polyurethane scaffolds. Biomaterials 29:4217–4226.  https://doi.org/10.1016/j.biomaterials.2008.07.024 CrossRefGoogle Scholar
  17. Huang B, Wang W, Li Q, Wang Z, Yan B, Zhang Z, Wang L, Huang M, Jia C, Lu J, Liu S, Chen H, Li M, Cai D, Jiang Y, Jin D, Bai X (2016a) Osteoblasts secrete Cxcl9 to regulate angiogenesis in bone. Nat Commun 7:13885.  https://doi.org/10.1038/ncomms13885 CrossRefGoogle Scholar
  18. Huang H, Ma L, Kyrkanides S (2016b) Effects of vascular endothelial growth factor on osteoblasts and osteoclasts. Am J Orthod Dentofac Orthop 149:366–373.  https://doi.org/10.1016/j.ajodo.2015.09.021 CrossRefGoogle Scholar
  19. Kang Y-H, Kim H-M, Byun J-H, Kim U-K, Sung I-Y, Cho Y-C, Park B-W (2015) Stability of simultaneously placed dental implants with autologous bone grafts harvested from the iliac crest or intraoral jaw bone. BMC Oral Health.  https://doi.org/10.1186/s12903-015-0156-x Google Scholar
  20. Kretlow JD, Jin YQ, Liu W, Zhang WJ, Hong TH, Zhou GD, Baggett LS, Mikos AG, Cao Y (2008) Donor age and cell passage affects differentiation potential of murine bone marrow-derived stem cells. BMC Cell Biol 9:60.  https://doi.org/10.1186/1471-2121-9-60 CrossRefGoogle Scholar
  21. Lee JT, Choi SY, Kim HL, Kim JY, Lee HJ, Kwon TG (2015) Comparison of gene expression between mandibular and iliac bone-derived cells. Clin Oral Investig 19:1223–1233.  https://doi.org/10.1007/s00784-014-1353-8 CrossRefGoogle Scholar
  22. Liu H, Guo J, Wang L, Chen N, Karaplis A, Goltzman D, Miao D (2009) Distinctive anabolic roles of 1,25-dihydroxyvitamin D(3) and parathyroid hormone in teeth and mandible versus long bones. J Endocrinol 203:203–213.  https://doi.org/10.1677/JOE-09-0247 CrossRefGoogle Scholar
  23. Liu Y, Berendsen AD, Jia S, Lotinun S, Baron R, Ferrara N, Olsen BR (2012) Intracellular VEGF regulates the balance between osteoblast and adipocyte differentiation. J Clin Invest 122:3101–3113.  https://doi.org/10.1172/jci61209 CrossRefGoogle Scholar
  24. Liu XL, Li CL, Lu WW, Cai WX, Zheng LW (2015) Skeletal site-specific response to ovariectomy in a rat model: change in bone density and microarchitecture. Clin Oral Implants Res 26:392–398.  https://doi.org/10.1111/clr.12360 CrossRefGoogle Scholar
  25. Liu C, Cui X, Ackermann TM, Flamini V, Chen W, Castillo AB (2016) Osteoblast-derived paracrine factors regulate angiogenesis in response to mechanical stimulation. Integr Biol (Camb) 8:785–794.  https://doi.org/10.1039/c6ib00070c CrossRefGoogle Scholar
  26. Maes C, Araldi E, Haigh K, Khatri R, Van Looveren R, Giaccia AJ, Haigh JJ, Carmeliet G, Schipani E (2012) VEGF-independent cell-autonomous functions of HIF-1α regulating oxygen consumption in fetal cartilage are critical for chondrocyte survival. J Bone Miner Res 27:596–609.  https://doi.org/10.1002/jbmr.1487 CrossRefGoogle Scholar
  27. Marini M, Bertolai R, Ambrosini S, Sarchielli E, Vannelli GB, Sgambati E (2015) Differential expression of vascular endothelial growth factor in human fetal skeletal site-specific tissues: mandible versus femur. Acta Histochem 117:228–234.  https://doi.org/10.1016/j.acthis.2015.02.006 CrossRefGoogle Scholar
  28. Mavropoulos A, Rizzoli R, Ammann P (2007) Different responsiveness of alveolar and tibial bone to bone loss stimuli. J Bone Miner Res 22:403–410.  https://doi.org/10.1359/jbmr.061208 CrossRefGoogle Scholar
  29. Mertens C, Decker C, Seeberger R, Hoffmann J, Sander A, Freier K (2013) Early bone resorption after vertical bone augmentation–a comparison of calvarial and iliac grafts. Clin Oral Implants Res 24:820–825.  https://doi.org/10.1111/j.1600-0501.2012.02463.x CrossRefGoogle Scholar
  30. Meury T, Verrier S, Alini M (2006) Human endothelial cells inhibit BMSC differentiation into mature osteoblasts in vitro by interfering with osterix expression. J Cell Biochem 98:992–1006.  https://doi.org/10.1002/jcb.20818 CrossRefGoogle Scholar
  31. Mikoya T, Inoue N, Matsuzawa Y, Totsuka Y, Kajii TS, Hirosawa T (2010) Monocortical mandibular bone grafting for reconstruction of alveolar cleft the cleft. Palate-Craniofac J 47:454–468.  https://doi.org/10.1597/09-172 CrossRefGoogle Scholar
  32. Montero A, Okada Y, Tomita M, Ito M, Tsurukami H, Nakamura T, Doetschman T, Coffin JD, Hurley MM (2000) Disruption of the fibroblast growth factor-2 gene results in decreased bone mass and bone formation. J Clin Invest 105:1085–1093.  https://doi.org/10.1172/JCI8641 CrossRefGoogle Scholar
  33. Ozaki H, Yu AY, Delia N, Ozaki K, Luna JD, Yamada H, Hackett SF, Okamoto N, Zack DJ, Semenza GL, Campochiaro PA (1999) Hypoxia inducible factor-1alpha is increased in ischemic retina-temporal and spatial correlation with VEGF expression. Invest Ophthalmol Vis Sci 40:182–189Google Scholar
  34. Pagani S, Torricelli P, Veronesi F, Salamanna F, Cepollaro S, Fini M (2018) An advanced tri-culture model to evaluate the dynamic interplay among osteoblasts, osteoclasts, and endothelial cells. J Cell Physiol 233:291–301.  https://doi.org/10.1002/jcp.25875 CrossRefGoogle Scholar
  35. Papapetropoulos A, García-Cardeña G, Madri JA, Sessa WC (1997) Nitric oxide production contributes to the angiogenic properties of vascular endothelial growth factor in human endothelial cells. J Clin Invest 100:3131–3139.  https://doi.org/10.1172/JCI119868 CrossRefGoogle Scholar
  36. Pintucci G, Moscatelli D, Saponara F, Biernacki PR, Baumann FG, Bizekis C, Galloway AC, Basilicoá C, Mignatti P (2002) Lack of ERK activation and cell migration in FGF-2-deficient endothelial cells. FASEB J 16:598–600.  https://doi.org/10.1096/fj.01-0815fje CrossRefGoogle Scholar
  37. Ponce ML (2009) Tube formation: an in vitro matrigel angiogenesis assay. Methods Mol Biol 467:183–188.  https://doi.org/10.1007/978-1-59745-241-0_10 CrossRefGoogle Scholar
  38. Reichert JC, Gohlke J, Friis TE, Quent VM, Hutmacher DW (2013) Mesodermal and neural crest derived ovine tibial and mandibular osteoblasts display distinct molecular differences. Gene 525:99–106.  https://doi.org/10.1016/j.gene.2013.04.026 CrossRefGoogle Scholar
  39. Shalaby F, Rossant J, Yamaguchi TP, Gertsenstein M, Wu X-F, Breitman ML, Schuh AC (1995) Failure of blood-island formation and vasculogenesis in Flk-1-deficient mice. Nature 376:62–66.  https://doi.org/10.1038/376062a0 CrossRefGoogle Scholar
  40. Shalaby F, Ho J, Stanford WL, Fischer K-D, Schuh AC, Schwartz L, Bernstein A, Rossant J (1997) A requirement for Flk1 in primitive and definitive hematopoiesis and vasculogenesis. Cell 89:981–990  https://doi.org/10.1016/S0092-8674(00)80283-4 CrossRefGoogle Scholar
  41. Sivaraj KK, Adams RH (2016) Blood vessel formation and function in bone. Development 143:2706–2715.  https://doi.org/10.1242/dev.136861 CrossRefGoogle Scholar
  42. Stolzing A, Jones E, Mcgonagle D, Scutt A (2008) Age-related changes in human bone marrow-derived mesenchymal stem cells: consequences for cell therapies. Mech Ageing Dev 129:163–173.  https://doi.org/10.1016/j.mad.2007.12.002 CrossRefGoogle Scholar
  43. Street J, Bao M, deGuzman L, Bunting S, Peale FV Jr, Ferrara N, Steinmetz H, Hoeffel J, Cleland JL, Daugherty A, van Bruggen N, Redmond HP, Carano RA, Filvaroff EH (2002) Vascular endothelial growth factor stimulates bone repair by promoting angiogenesis and bone turnover. Proc Natl Acad Sci USA 99:9656–9661.  https://doi.org/10.1073/pnas.152324099 CrossRefGoogle Scholar
  44. Suri C, Jones PF, Patan S, Bartunkova S, Maisonpierre PC, Davis S, Sato TN, Yancopoulos GD (1996) Requisite role of angiopoietin-1, a ligand for the TIE2 receptor, during embryonic angiogenesis. Cell 87:1171–1180.  https://doi.org/10.1016/S0092-8674(00)81813-9 CrossRefGoogle Scholar
  45. Suzuki T, Miyamoto T, Fujita N, Ninomiya K, Iwasaki R, Toyama Y, Suda T (2007) Osteoblast-specific angiopoietin 1 overexpression increases bone mass. Biochem Biophys Res Commun 362:1019–1025.  https://doi.org/10.1016/j.bbrc.2007.08.099 CrossRefGoogle Scholar
  46. Taylor SEB, Shah M, Orriss IR (2014) Generation of rodent and human osteoblasts. BoneKEy Rep.  https://doi.org/10.1038/bonekey.2014.80 Google Scholar
  47. Tokuda H, Hatakeyama D, Akamatsu S, Tanabe K, Yoshida M, Shibata T, Kozawa O (2003a) Involvement of MAP kinases in TGF-β-stimulated vascular endothelial growth factor synthesis in osteoblasts. Arch Biochem Biophys 415:117–125.  https://doi.org/10.1016/s0003-9861(03)00225-x CrossRefGoogle Scholar
  48. Tokuda H, Hatakeyama D, Shibata T, Akamatsu S, Oiso Y, Kozawa O (2003b) p38 MAP kinase regulates BMP-4-stimulated VEGF synthesis via p70 S6 kinase in osteoblasts. Am J Physiol Endocrinol Metab 284:1202–1209.  https://doi.org/10.1152/ajpendo.00300.2002 CrossRefGoogle Scholar
  49. Tokuda H, Hirade K, Wang X, Oiso Y, Kozawa O (2003c) Involvement of SAPK:JNK in basic fibroblast growth factor-induced vascular endothelial growth factor release in osteoblasts. J Endocrinol 177:101–107.  https://doi.org/10.1677/joe.0.1770101 CrossRefGoogle Scholar
  50. Vailhé B, Vittet D, Feige J-J (2001) In vitro models of vasculogenesis and angiogenesis. Lab Invest 81:439–452.  https://doi.org/10.1038/labinvest.3780252 CrossRefGoogle Scholar
  51. Villars F, Guillotin B, Amedee T, Dutoya S, Bordenave L, Bareille R, Amedee J (2002) Effect of HUVEC on human osteoprogenitor cell differentiation needs heterotypic gap junction communication. Am J Physiol Cell Physiol 282:C775–C785.  https://doi.org/10.1152/ajpcell.00310.2001 CrossRefGoogle Scholar
  52. Xu Y, Malladi P, Zhou D, Longaker MT (2007) Molecular and cellular characterization of mouse calvarial osteoblasts derived from neural crest and paraxial mesoderm. Plast Reconstr Surg 120:1783–1795.  https://doi.org/10.1097/01.prs.0000279491.48283.51 CrossRefGoogle Scholar
  53. Yamaza T, Ren G, Akiyama K, Chen C, Shi Y, Shi S (2011) Mouse mandible contains distinctive mesenchymal stem cells. J Dent Res 90:317–324.  https://doi.org/10.1177/0022034510387796 CrossRefGoogle Scholar
  54. Zhang F, Qiu T, Wu X, Wan C, Shi W, Wang Y, Chen J-g, Wan M, Clemens TL, Cao X (2009) Sustained BMP signaling in osteoblasts stimulates bone formation by promoting angiogenesis and osteoblast differentiation. J Bone Miner Res 24:1224–1233.  https://doi.org/10.1359/jbmr.090204 CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Fujian Biological Materials Engineering and Technology Center of Stomatology, School and Hospital of StomatologyFujian Medical UniversityFuzhouChina

Personalised recommendations