Advertisement

Journal of Molecular Histology

, Volume 49, Issue 5, pp 499–507 | Cite as

Constitutive activation of β-catenin in ameloblasts leads to incisor enamel hypomineralization

  • Linlin Fan
  • Shijian Deng
  • Xin Sui
  • Mengmeng Liu
  • Shuhua Cheng
  • Yunfei Wang
  • Yuguang Gao
  • Chun-Hung Chu
  • Qi Zhang
Original Paper

Abstract

Enamel is the hardest tissue with the highest degree of mineralization protecting the dental pulp from injury in vertebrates. The ameloblasts differentiated from ectoderm-derived epithelial cells are a single cell layer and are important for the enamel formation and mineralization. Wnt/β-catenin signaling has been proven to exert an important role in the mineralization of bone, dentin and cementum. Little was known about the regulatory mechanism of Wnt/β-catenin signaling pathway in ameloblasts during amelogenesis, especially in the mineralization of enamel. To investigate the role of β-catenin in ameloblasts, we established Amelx-Cre; β-catenin∆ex3fl/fl (CA-β-catenin) mice, which could constitutive activate β-catenin in ameloblasts. It showed the delayed mineralization and eventual hypomineralization in the incisor enamel of CA-β-catenin mice. Meanwhile, the amelogenesis-related proteinases Mmp20 and Klk4 were decreased in the incisors of CA-β-catenin mice. These data indicated that β-catenin plays an essential role in differentiation and function of ameloblasts during amelogenesis.

Keywords

β-Catenin Ameloblast Enamel Hypomineralization 

Notes

Acknowledgements

This work was supported by grants from the National Natural Science Foundation of China (Grant Nos: 81570966, 81371141), the Specialized Research Fund for the Doctoral Program of Higher Education (Grant No: 20130072110020) and the Fundamental Research Funds for the Central Universities.

Author contribution

Linlin Fan, Yuguang Gao, Chun-Hung Chu and Qi Zhang contributed to conception, design, data acquisition analysis and interpretation, drafted and critically revised the manuscript; Shijian Deng, Xin Sui, Mengmeng Liu, Shuhua Cheng, Yunfei Wang contributed to conception, design and data acquisition.

Compliance with ethical standards

Conflict of interest

No potential conflicts of interest are disclosed.

Supplementary material

10735_2018_9788_MOESM1_ESM.docx (12 kb)
Supplementary material 1 (DOCX 12 KB)
10735_2018_9788_MOESM2_ESM.tif (6.6 mb)
Supplementary material 2 (TIF 6714 KB)

References

  1. Andl T, Reddy ST, Gaddapara T, Millar SE (2002) WNT signals are required for the initiation of hair follicle development. Dev Cell 2:643–653CrossRefPubMedGoogle Scholar
  2. Aurrekoetxea M, Lopez J, Garcia P, Ibarretxe G, Unda F (2012) Enhanced Wnt/beta-catenin signalling during tooth morphogenesis impedes cell differentiation and leads to alterations in the structure and mineralisation of the adult tooth. Biol Cell 104:603–617.  https://doi.org/10.1111/boc.201100075 CrossRefPubMedGoogle Scholar
  3. Bae J-M et al (2018) Specificity protein 7 is required for proliferation and differentiation of ameloblasts and odontoblasts. J Bone Miner Res.  https://doi.org/10.1002/jbmr.3401 CrossRefPubMedGoogle Scholar
  4. Bartlett JD (2013) Dental enamel development: proteinases and their enamel matrix substrates. ISRN Dent 2013:684607.  https://doi.org/10.1155/2013/684607 CrossRefPubMedPubMedCentralGoogle Scholar
  5. Bartlett JD, Simmer JP (2014) Kallikrein-related peptidase-4 (KLK4): role in enamel formation and revelations from ablated mice. Front Physiol 5:240.  https://doi.org/10.3389/fphys.2014.00240 CrossRefPubMedPubMedCentralGoogle Scholar
  6. Bartlett JD, Skobe Z, Nanci A, Smith CE (2011) Matrix metalloproteinase 20 promotes a smooth enamel surface, a strong dentino-enamel junction, and a decussating enamel rod pattern. Eur J Oral Sci 119(Suppl 1):199–205.  https://doi.org/10.1111/j.1600-0722.2011.00864.x CrossRefPubMedPubMedCentralGoogle Scholar
  7. Caterina JJ (2002) Enamelysin (matrix metalloproteinase 20)-deficient mice display an amelogenesis imperfecta phenotype. J Biol Chem 277:49598–49604.  https://doi.org/10.1074/jbc.M209100200 CrossRefPubMedGoogle Scholar
  8. Chen S et al (2015) Adverse effects of osteocytic constitutive activation of ss-catenin on bone strength and bone growth. J Bone Miner Res 30:1184–1194.  https://doi.org/10.1002/jbmr.2453 CrossRefPubMedGoogle Scholar
  9. Dassule HR, McMahon AP (1998) Analysis of epithelial-mesenchymal interactions in the initial morphogenesis of the mammalian tooth. Dev Biol 202:215–227.  https://doi.org/10.1006/dbio.1998.8992 CrossRefPubMedGoogle Scholar
  10. Guan X, Xu M, Millar SE, Bartlett JD (2016) Beta-catenin is essential for ameloblast movement during enamel development. Eur J Oral Sci 124:221–227.  https://doi.org/10.1111/eos.12261 CrossRefPubMedGoogle Scholar
  11. Han P, Ivanovski S, Crawford R, Xiao Y (2015) Activation of the canonical Wnt signaling pathway induces cementum regeneration. J Bone Miner Res 30:1160–1174.  https://doi.org/10.1002/jbmr.2445 CrossRefPubMedGoogle Scholar
  12. Hasegawa K et al (2016) Facioscapulohumeral muscular dystrophy (FSHD) region gene 1 (FRG1) expression and possible function in mouse tooth germ development. J Mol Histol 47:375–387.  https://doi.org/10.1007/s10735-016-9680-5 CrossRefPubMedGoogle Scholar
  13. Hu JC et al (2014) Enamelin is critical for ameloblast integrity and enamel ultrastructure formation. PLoS ONE 9:e89303.  https://doi.org/10.1371/journal.pone.0089303 CrossRefPubMedPubMedCentralGoogle Scholar
  14. Hu Y, Smith CE, Richardson AS, Bartlett JD, Hu JC, Simmer JP (2016) MMP20, KLK4, and MMP20/KLK4 double null mice define roles for matrix proteases during dental enamel formation. Mol Genet Genomic Med 4:178–196.  https://doi.org/10.1002/mgg3.194 CrossRefPubMedGoogle Scholar
  15. Jarvinen E, Salazar-Ciudad I, Birchmeier W, Taketo MM, Jernvall J, Thesleff I (2006) Continuous tooth generation in mouse is induced by activated epithelial Wnt/beta-catenin signaling. Proc Natl Acad Sci USA 103:18627–18632.  https://doi.org/10.1073/pnas.0607289103 CrossRefPubMedGoogle Scholar
  16. Jinping Z et al (2017) Overexpression of constitutively active MAP3K7 in ameloblasts causes enamel defects of mouse teeth. Arch Oral Biol 84:169–175.  https://doi.org/10.1016/j.archoralbio.2017.09.020 CrossRefPubMedGoogle Scholar
  17. Lee HK, Park JW, Seo YM, Kim HH, Lee G, Bae HS, Park JC (2016) Odontoblastic inductive potential of epithelial cells derived from human deciduous dental pulp. J Mol Histol 47:345–351.  https://doi.org/10.1007/s10735-016-9676-1 CrossRefPubMedPubMedCentralGoogle Scholar
  18. Lerner UH, Ohlsson C (2015) The WNT system: background and its role in bone. J Intern Med 277:630–649.  https://doi.org/10.1111/joim.12368 CrossRefPubMedGoogle Scholar
  19. Li S, Pan Y (2017) Differential expression of transforming growth factor-beta1, connective tissue growth factor, phosphorylated-SMAD2/3 and phosphorylated-ERK1/2 during mouse tooth development. J Mol Histol 48:347–355.  https://doi.org/10.1007/s10735-017-9733-4 CrossRefPubMedGoogle Scholar
  20. Liu F et al (2008) Wnt/beta-catenin signaling directs multiple stages of tooth morphogenesis. Dev Biol 313:210–224.  https://doi.org/10.1016/j.ydbio.2007.10.016 CrossRefPubMedGoogle Scholar
  21. Liu P, Zhang H, Liu C, Wang X, Chen L, Qin C (2014) Inactivation of Fam20C in cells expressing type I collagen causes periodontal disease in mice. PLoS ONE 9:e114396.  https://doi.org/10.1371/journal.pone.0114396 CrossRefPubMedPubMedCentralGoogle Scholar
  22. Lohi M, Tucker AS, Sharpe PT (2010) Expression of Axin2 indicates a role for canonical Wnt signaling in development of the crown and root during pre- and postnatal tooth development. Dev Dyn 239:160–167.  https://doi.org/10.1002/dvdy.22047 CrossRefPubMedGoogle Scholar
  23. Moradian-Oldak J (2012) Protein-mediated enamel mineralization. Front Biosci 17:1996–2023CrossRefPubMedCentralPubMedGoogle Scholar
  24. Muzumdar MD, Tasic B, Miyamichi K, Li L, Luo L (2007) A global double-fluorescent Cre reporter mouse. Genesis 45:593–605.  https://doi.org/10.1002/dvg.20335 CrossRefGoogle Scholar
  25. Nakayama Y, Holcroft J, Ganss B (2015) Enamel hypomineralization and structural defects in amelotin-deficient mice. J Dent Res 94:697–705.  https://doi.org/10.1177/0022034514566214 CrossRefPubMedGoogle Scholar
  26. Sarkar L, Sharpe PT (1999) Expression of Wnt signalling pathway genes during tooth development. Mech Dev 85:197–200CrossRefPubMedGoogle Scholar
  27. Shi L, Li L, Wang D, Li S, Chen Z, An Z (2016) Spatiotemporal expression of caveolin-1 and EMMPRIN during mouse tooth development. J Mol Histol 47:337–344.  https://doi.org/10.1007/s10735-016-9675-2 CrossRefPubMedGoogle Scholar
  28. Shin M et al (2014) Matrix metalloproteinase-20 over-expression is detrimental to enamel development: a Mus musculus model. PLoS ONE 9:e86774.  https://doi.org/10.1371/journal.pone.0086774 CrossRefPubMedPubMedCentralGoogle Scholar
  29. Simmer JP, Hu Y, Lertlam R, Yamakoshi Y, Hu JC (2009) Hypomaturation enamel defects in Klk4 knockout/LacZ knockin mice. J Biol Chem 284:19110–19121.  https://doi.org/10.1074/jbc.M109.013623 CrossRefPubMedPubMedCentralGoogle Scholar
  30. Simmer JP, Richardson AS, Hu YY, Smith CE, Ching-Chun Hu J (2012) A post-classical theory of enamel biomineralization… and why we need one. Int J Oral Sci 4:129–134.  https://doi.org/10.1038/ijos.2012.59 CrossRefPubMedPubMedCentralGoogle Scholar
  31. Smith CE, Hu Y, Richardson AS, Bartlett JD, Hu JC, Simmer JP (2011) Relationships between protein and mineral during enamel development in normal and genetically altered mice. Eur J Oral Sci 119(Suppl 1):125–135.  https://doi.org/10.1111/j.1600-0722.2011.00871.x CrossRefPubMedPubMedCentralGoogle Scholar
  32. Suomalainen M, Thesleff I (2010) Patterns of Wnt pathway activity in the mouse incisor indicate absence of Wnt/beta-catenin signaling in the epithelial stem cells. Dev Dyn 239:364–372.  https://doi.org/10.1002/dvdy.22106 CrossRefPubMedGoogle Scholar
  33. van Amerongen R, Nusse R (2009) Towards an integrated view of Wnt signaling in development. Development 136:3205–3214.  https://doi.org/10.1242/dev.033910 CrossRefPubMedGoogle Scholar
  34. Yang Z et al (2013) Cessation of epithelial Bmp signaling switches the differentiation of crown epithelia to the root lineage in a beta-catenin-dependent manner. Mol Cell Biol 33:4732–4744.  https://doi.org/10.1128/MCB.00456-13 CrossRefPubMedPubMedCentralGoogle Scholar
  35. Yu HM et al (2005) The role of Axin2 in calvarial morphogenesis and craniosynostosis. Development 132:1995–2005.  https://doi.org/10.1242/dev.01786 CrossRefPubMedPubMedCentralGoogle Scholar
  36. Zeng L et al (1997) The mouse fused locus encodes axin, an inhibitor of the Wnt signaling pathway that regulates embryonic axis formation. Cell 90:181–192CrossRefPubMedGoogle Scholar
  37. Zhu X et al (2013) Intra-epithelial requirement of canonical Wnt signaling for tooth morphogenesis. J Biol Chem 288:12080–12089.  https://doi.org/10.1074/jbc.M113.462473 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  • Linlin Fan
    • 1
  • Shijian Deng
    • 1
  • Xin Sui
    • 1
  • Mengmeng Liu
    • 1
  • Shuhua Cheng
    • 1
  • Yunfei Wang
    • 1
  • Yuguang Gao
    • 2
  • Chun-Hung Chu
    • 3
  • Qi Zhang
    • 1
    • 4
  1. 1.Shanghai Engineering Research Center of Tooth Restoration and RegenerationShanghaiChina
  2. 2.Department of StomatologyHospital Affiliated to Binzhou Medical UniversityBinzhouChina
  3. 3.Faculty of DentistryThe University of Hong KongHong KongChina
  4. 4.Department of Endodontics, School of StomatologyTongji UniversityShanghaiChina

Personalised recommendations