Advertisement

Journal of Molecular Histology

, Volume 48, Issue 5–6, pp 337–345 | Cite as

Inhibition of chondroitin sulfate glycosaminoglycans incorporation affected odontoblast differentiation in cultured embryonic mouse molars

  • Lipei Liu
  • Weiting Chen
  • Lefeng Li
  • Fangfang Xu
  • Beizhan JiangEmail author
Original Paper

Abstract

Chondroitin sulfate proteoglycan (CSPG) is an important component of extracellular matrix (ECM), it is composed of a core protein and one or more chondroitin sulfate glycosaminoglycan side chains (CS-GAGs). To investigate the roles of its CS-GAGs in dentinogenesis, the mouse mandibular first molar tooth germs at early bell stage were cultivated with or without β-xyloside. As expected, the CS-GAGs were inhibited on their incorporation to CSPGs by β-xyloside, accompanied by the change of morphology of the cultured tooth germs. The histological results and the transmission electron microscopy (TEM) investigation indicated that β-xyloside exhibited obvious inhibiting effects on odontoblasts differentiation compared with the control group. Meanwhile the results of immunohistochemistry, in situ hybridization and quantitative RT-PCR for type I collagen, dentin matrix acidic phosphoprotein 1 and dentin sialophosphoprotein, the products of differentiated odontoblasts, further proved that odontoblasts differentiation was inhibited. Collagen fibers detected in TEM decreased and arranged in disorder as well. Thus we conclude that the inhibition of CS-GAGs incorporation to CSPGs can affect odontoblast differentiation in cultured embryonic mouse molars.

Keywords

Chondroitin sulfate proteoglycans Glycosaminoglycan β-Xyloside Odontoblast Dentinogenesis 

Notes

Acknowledgements

Financial support for this study was provided by Shanghai Science and Technology Commission Program (Nos. 124119A7400 and 15411965800).

Author contributions

The manuscript was written through contributions of all authors. All authors approve the final version of the manuscript.

Compliance with ethical standards

Conflict of interest

The authors disclose no potential conflicts of interest.

References

  1. Carulli D, Laabs T, Geller HM et al (2005) Chondroitin sulfate proteoglycans in neural development and regeneration. Curr Opin Neurobiol 15(1):116–120CrossRefPubMedGoogle Scholar
  2. D’souza RN, Cavender A, Sunavala G et al (1997) Gene expression patterns of murine dentin matrix protein 1 (Dmp1) and dentin sialophosphoprotein (DSPP) suggest distinct developmental functions in vivo. J Bone Miner Res 12(12):2040–2049CrossRefPubMedGoogle Scholar
  3. Dondi P, Muir H (1976) Collagen synthesis and deposition in cartilage during disrupted proteoglycan production. Biochem J 160(1):117–120CrossRefPubMedPubMedCentralGoogle Scholar
  4. Du J, Wang Q, Yang P et al (2016) FHL2 mediates tooth development and human dental pulp cell differentiation into odontoblasts, partially by interacting with Runx2. J Mol Histol 47(2):195–202CrossRefPubMedGoogle Scholar
  5. Embery G, Hall R, Waddington R et al (2001) Proteoglycans in dentinogenesis. Crit Rev Oral Biol Med 12(4):331–349CrossRefPubMedGoogle Scholar
  6. Fisher LW, Torchia DA, Fohr B et al (2001) Flexible structures of sibling proteins, bone sialoprotein, and osteopontin. Biochem Biophys Res Commun 280(2):460–465CrossRefPubMedGoogle Scholar
  7. Garud D, Tran V, Victor X et al (2008) Inhibition of heparan sulfate and chondroitin sulfate proteoglycan biosynthesis. J Biol Chem 283(43):28881–28887CrossRefPubMedPubMedCentralGoogle Scholar
  8. Hynes RO (2009) The extracellular matrix: not just pretty fibrils. Science 326(5957):1216–1219CrossRefPubMedPubMedCentralGoogle Scholar
  9. Jernvall J, Kettunen P, Karavanova I et al (1994) Evidence for the role of the enamel knot as a control center in mammalian tooth cusp formation: non-dividing cells express growth stimulating Fgf-4 gene. Int J Dev Biol 38(3):463PubMedGoogle Scholar
  10. Jiang BZ, Yokohama-tamaki T, Wang ZL et al (2010) Expression, localisation and synthesis of versican by the enamel organ of developing mouse molar tooth germ: an in vivo and in vitro study. Arch Oral Biol 55(12):995–1006CrossRefPubMedGoogle Scholar
  11. Kazuto HD, Kemmotsu S, Takeuchi Y et al (1999) The primary calcification in bones follows removal of decorin and fusion of collagen fibrils. J Bone Miner Res 14(2):273–280CrossRefGoogle Scholar
  12. Kresse H, Schönherr E (2001) Proteoglycans of the extracellular matrix and growth control. J Cell Physiol 189(3):266–274CrossRefPubMedGoogle Scholar
  13. Landolt RM, Vaughan L, Winterhalter KH et al (1995) versican is selectively expressed in embryonic tissues that act as barriers to neural crest cell migration and axon outgrowth. Development 121(8):2303–2312PubMedGoogle Scholar
  14. Lee HK, Park JW, Seo YM et al (2016) Odontoblastic inductive potential of epithelial cells derived from human deciduous dental pulp. J Mol Histol 47(3):345–351CrossRefPubMedGoogle Scholar
  15. Linde A, Goldberg M (1993) Dentinogenesis. Crit Rev Oral Biol Med 4(5):679–728CrossRefPubMedGoogle Scholar
  16. Maciejewska I, Spodnik JH, Domaradzkapytel B et al (2006) Fluoride alters type I collagen expression in the early stages of odontogenesis. Folia Morphol 65(4):359–366Google Scholar
  17. Mark MP, Karcher-Djuricic V, Baker JR et al (1990) Effects of beta-d-xyloside on morphogenesis and cytodifferentiation in cultured embryonic mouse molars. Cell Differ Dev 32(1):1–16CrossRefPubMedGoogle Scholar
  18. Morita W, Yano W, Nagaoka T et al (2014) Patterns of morphological variation in enamel-dentin junction and outer enamel surface of human molars. J Anat 224(6):669–680CrossRefPubMedPubMedCentralGoogle Scholar
  19. Ponedel’kina IY, Khaibrakhmanova EA, Odinokov VN (2012) Isolation of chondroitin-6-sulfate from a mixture with dermatan sulfate selectively oxidized by NaOCl–NaBr–2,2,6,6-tetramethylpiperidine-1-oxyl. Chem Nat Compd 48(1):112–113CrossRefGoogle Scholar
  20. Rozario T, Desimone DW (2010) The extracellular matrix in development and morphogenesis: a dynamic view. Dev Biol 341(1):126–140CrossRefPubMedGoogle Scholar
  21. Schwartz NB (1977) Regulation of chondroitin sulfate synthesis. Effect of beta-xylosides on synthesis of chondroitin sulfate proteoglycan, chondroitin sulfate chains, and core protein. J Biol Chem 252(18):6316–6321PubMedGoogle Scholar
  22. Septier D, Hall RC, Embery G et al (2001) Immunoelectron microscopic visualization of pro- and secreted forms of decorin and biglycan in the predentin and during dentin formation in the rat incisor. Calcif Tissue Int 69(1):38–45CrossRefPubMedGoogle Scholar
  23. Shi L, Li L, Wang D et al (2016) Spatiotemporal expression of caveolin-1 and EMMPRIN during mouse tooth development. J Mol Histol 47(3):337–344CrossRefPubMedGoogle Scholar
  24. Sotoodehnejadnematalahi F, Burke B (2013) Structure, function and regulation of versican: the most abundant type of proteoglycan in the extracellular matrix. Acta Med Iran 51(11):740–750PubMedGoogle Scholar
  25. Takagaki K, Iwafune M, Kakizaki I et al (2002) Cleavage of the xylosyl serine linkage between a core peptide and a glycosaminoglycan chain by cellulases. J Biol Chem 277(21):18397–18403CrossRefPubMedGoogle Scholar
  26. Tenório DM, Santos MF, Zorn TM (2003) Distribution of biglycan and decorin in rat dental tissue. Braz J Med Biol Res 36(8):1061–1065CrossRefPubMedGoogle Scholar
  27. Thesleff I, Nieminen P (1996) Tooth morphogenesis and cell differentiation. Curr Opin Cell Biol 8(6):844–850CrossRefPubMedGoogle Scholar
  28. Thesleff I, Partanen AM, Vainio S (1991) Epithelial-mesenchymal interactions in tooth morphogenesis: the roles of extracellular matrix, growth factors, and cell surface receptors. J Craniofac Genet Dev Biol 11(4):229–237PubMedGoogle Scholar
  29. Thesleff I, Vaahtokari A, Vainio S et al (1996) Molecular mechanisms of cell and tissue interactions during early tooth development. Anat Rec 245(2):151–161CrossRefPubMedGoogle Scholar
  30. Vaahtokari A, Aberg T, Jernvall J et al (1996) The enamel knot as a signaling center in the developing mouse tooth. Mech Dev 54(1):39–43CrossRefPubMedGoogle Scholar
  31. Veis A (1993) Mineral-matrix Interactions in bone and dentin. J Bone Miner Res 8(S2):S493–S497CrossRefPubMedGoogle Scholar
  32. Wight TN (2002) Versican: a versatile extracellular matrix proteoglycan in cell biology. Curr Opin Cell Biol 14(5):617–623CrossRefPubMedGoogle Scholar
  33. Wu N, Iwamoto T, Yu S et al (2010) Pdgfs regulate tooth germ proliferation and ameloblast differentiation. Arch Oral Biol 55(6):426–434CrossRefPubMedGoogle Scholar
  34. Xie M, Xing G, Hou L et al (2015) Functional role of EMMPRIN in the formation and mineralisation of dental matrix in mouse molars. J Mol Histol 46(1):21–32CrossRefPubMedGoogle Scholar
  35. Yamauchi M, Chandler GS, Tanzawa H et al (1996) Cross-linking and the molecular packing of corneal collagen. Biochem Biophys Res Commun 219(2):311–315CrossRefPubMedGoogle Scholar
  36. Yang G, Jiang B, Cai W et al (2016) Hyaluronan and hyaluronan synthases expression and localization in embryonic mouse molars. J Mol Histol 47(4):413–420CrossRefPubMedGoogle Scholar
  37. Zhang Z, Guo Q, Tian H et al (2014) Effects of WNT10A on proliferation and differentiation of human dental pulp cells. J Endod 40(10):1593–1599CrossRefPubMedGoogle Scholar
  38. Zhang H, Jani P, Liang T et al (2017) Inactivation of bone morphogenetic protein 1 (Bmp1) and tolloid-like 1 (Tll1) in cells expressing type I collagen leads to dental and periodontal defects in mice. J Mol Histol 48(2):83–98CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  • Lipei Liu
    • 1
  • Weiting Chen
    • 1
  • Lefeng Li
    • 1
  • Fangfang Xu
    • 1
  • Beizhan Jiang
    • 1
    Email author
  1. 1.Department of Endodontics, School & Hospital of Stomatology, Tongji UniversityShanghai Engineering Research Center of Tooth Restoration and RegenerationShanghaiPeople’s Republic of China

Personalised recommendations