Journal of Molecular Histology

, Volume 48, Issue 1, pp 9–27 | Cite as

Evaluating the effect of silver nanoparticles on testes of adult albino rats (histological, immunohistochemical and biochemical study)

  • Samah M. AhmedEmail author
  • Shaimaa A. Abdelrahman
  • Sally M. Shalaby
Original Paper


Silver nanoparticles (AgNPs) are widely used in medicine, however, they have toxic impacts on different organs. AgNPs distribution to the testes was reported, so, we aimed to study the effect of intraperitoneal injection of AgNPs, at different concentrations and different time durations, on adult rat testes. Sixty healthy adult male Wistar albino rats were divided into three groups; control group (Group I) and two experimental groups (Groups II & III), each of which were subdivided into two subgroups. Rats in group II were exposed for 7 days to low and high doses of AgNPs, respectively. Rats in group III were exposed for 28 days to low and high doses of AgNPs, respectively. Testicular sections were stained with H&E, Toluidine blue, Immunohistochemical staining for Ki-67 and CD68 and Electron microscope examination were performed. Serum testosterone level and Quantitative Real-Time PCR for spermatogenesis genes were measured. Group IIa & IIb showed thickened capsule studded with nanoparticles, congested blood vessels, disorganized seminiferous tubules (Sts) and detached germinal epithelium. Group IIIa & IIIb showed marked reduction in the germinal epithelium, and shrunken Sts with the absence of sperms in most of them, which was more evident with higher doses of AgNPs. Significant decrease in cell proliferation and increase in interstitial tissue macrophages were more detected in groups II & III than in the control group. Decreased serum testosterone and decreased expression levels of spermatogenesis genes in groups IIa, IIb & IIIa, IIIb than in the control group were observed. In conclusion: intraperitoneal injection of AgNPs adversely affected the structure of adult rat testes. The tissue damage was more manifested with increased dose and duration of exposure.


Silver nanoparticles Rat testes Histology Immunohistochemistry Biochemical 



Silver nanoparticles


Seminiferous tubules






Hematoxylin and Eosin


Phosphate-buffered saline




‘Deleted in azoospermia-like’


Transition protein 2


Glial cell-line-derived neurotropic factor


Blood-testis barrier


Reactive oxygen species


Molybdenum trioxide


Steroidogenic Acute Regulatory protein


Germline stem cells


Blood–brain barrier


Compliance with ethical standards

Conflict of interest

There is no conflict of interest to declare.


  1. Alam MS, Andrina BB, Tay TW, Tsunekawa N, Kanai Y, Kurohmaru M (2010) Single administration of di(n-butyl) phthalate delays spermatogenesis in prepubertal rats. Tissue Cell 42:129–135CrossRefPubMedGoogle Scholar
  2. Amin Y, Hawas A, El-Batal A, Hassan S, Elsayed M (2015) Evaluation of Acute and Subchronic Toxicity of Silver Nanoparticles in Normal and Irradiated Animals. Br J Pharmacol Toxicol 6(2):22–38Google Scholar
  3. Asare N, Instanes C, Sandberg WJ, Refsnes M, Schwarze P, Kruszewski M, Brunborg G (2012) Cytotoxic and genotoxic effects of silver nanoparticles in testicular cells. Toxicology 291(1):65–72CrossRefPubMedGoogle Scholar
  4. Asharani PV, Wu YL, Gong Z et al (2008) Toxicity of silver nanoparticles in zebra fish models. Nanotechnology 19(25):255102CrossRefPubMedGoogle Scholar
  5. Attia A (2014) Evaluation of the Testicular Alterations Induced By Silver Nanoparticles in Male Mice: biochemical. Histol Ultrastruct Stud RJPBCS 5(4):1558–1589Google Scholar
  6. Aziz N, Saleh RA, Sharma RK, Lewis-Jones I, Esfandiari N, Thomas AJ et al (2004) Novel association between sperm reactive oxygen species production, sperm morphological defects, and the sperm deformity index. Fertil Steril 81:349–354CrossRefPubMedGoogle Scholar
  7. Baki ME, Miresmaili SM, Pourentezari M et al (2014) Effects of silver nano-particles on sperm parameters, number of Leydig cells and sex hormones in rats. Iran J Reprod Med 12(2):139–144PubMedPubMedCentralGoogle Scholar
  8. Bancroft J, Layton C (2013) Hematoxylin and eosin. In: Suvarna SK, Layton C, Bancroft JD (eds) Theory and Practice of histological techniques, Ch. 10 and 11, 7th edn. Churchill Livingstone of Elsevier, Philadelphia, pp 172–214Google Scholar
  9. Braydich-Stolle L, Hussain S, Schlager J, Hofmann M (2005) In vitro cytotoxicity of nanoparticles in mammalian germline stem cells. Toxicol Sci 88:412–419CrossRefPubMedPubMedCentralGoogle Scholar
  10. Braydich-Stolle LK, Lucas B, Schrand A, Murdock RC, Lee T, Schlager JJ et al (2010) Silver nanoparticles disrupt GDNF/Fyn kinase signaling in spermatogonial stem cells. Toxicol Sci 116(2):577–589CrossRefPubMedPubMedCentralGoogle Scholar
  11. Cayli S, Ocakli S, Senel U, Eyerci N, Delibasi T (2016) Role of p97/Valosin-containing protein (VCP) and Jab1/CSN5 in testicular ischaemia-reperfusion injury. J Mol Histol 47:91–100CrossRefPubMedGoogle Scholar
  12. Chen X, Schluesener H (2008) Nanosilver: a nanoproduct in medical application. Toxicol Lett 176:1–12CrossRefPubMedGoogle Scholar
  13. Chrastina A, Schnitzer JE (2010) Iodine-125 radiolabeling of silver nanoparticles for in vivo SPECT imaging. Int J Nanomed 5:653–659Google Scholar
  14. Collodel G, Terzuoli G, Mazzi L, Pascarelli NA, Renieri T, Moretti E (2013) In Vitro Effect of gold or silver nanoparticles on meiotic and postmeiotic fractions of rat germinal cells. Open Androl J 5:10–15CrossRefGoogle Scholar
  15. DeFalco T, Potter S, Williams A, Waller B, Kan M, Capel B (2015) Macrophages Contribute to the Spermatogonial Niche in the Adult Testis. Cell Rep 12:1107–1119CrossRefPubMedPubMedCentralGoogle Scholar
  16. Doudi M, Setorki M (2014) Acute effect of nanosilver to function and tissue liver of rat after intraperitoneal injection. J Biol Sci 14(3):213–219CrossRefGoogle Scholar
  17. Fijak M, Meinhardt A (2006) The testis in immune privilege. Immunol Rev 213:66–81CrossRefPubMedGoogle Scholar
  18. Foldbjerg R, Autrup H (2013) Mechanisms of Silver Nanoparticle Toxicity. Arch Basic Appl Med 1(1):5–15Google Scholar
  19. Garcia TX, Costac GMJ, Franc LR, Hofmann MC (2014) Sub-acute intravenous administration of silver nanoparticles in malemice alters Leydig cell function and testosterone levels. Reprod Toxicol 45:59–70CrossRefPubMedPubMedCentralGoogle Scholar
  20. Garza-Ocanas L, Ferrer DA, Burt J, Diaz-Torres LA, Ramirez CM, Rodriguez VT, Lujan RR, Romanovicz D, Jose-Yacaman M (2010) Biodistribution and long-term fate of silver nanoparticles functionalized with bovine serum albumin in rats. Metallomics 2(3):204–210CrossRefPubMedGoogle Scholar
  21. Glauret A, Lewis P (1998) Biological Specimen Preparation for Transmission Electron Microscopy, 1st edn. Portland Press, LondonGoogle Scholar
  22. Goluza T, Boscanin A, Cvetko J, Kozina V, Kosovit M, Bernat M, Kasum M, Kaštelan C, JeDek D (2014) Macrophages and Leydig Cells in Testicular Biopsies of Azoospermic Men. BioMed Res Int 2014:1–14Google Scholar
  23. Goodhew P, Humphreys J, Beanland R (2001) Electron Microscopy and Analysis, 3rd edn. Taylor and Francis, LondonGoogle Scholar
  24. Gozde ES, Yasemin EC, Cenk U, Emel DE, Feriha E (2012) Distribution of Zonula Occludens-1 and Occludin and alterations of testicular morphology after in utero radiation and postnatal hyperthermia in rats. Int J Exp Pathol 93(6):438–449CrossRefGoogle Scholar
  25. Gromadzka-Ostrowska J, Dziendzikowska K, Lankoff A, Dobrzyńska M, Instanes C, Brunborg G, Gajowik A, Radzikowska J, Wojewódzka M, Kruszewski M (2012) Silver nanoparticles effects on epididymal sperm in rats. Toxicol Lett 214(3):251–258CrossRefPubMedGoogle Scholar
  26. Hedger MP (2002) Macrophages and the immune responsiveness of the testis. J Reprod Immunol 57(1–2):19–34. doi: 10.1016/S0165-0378(02)00016-5.PMID12385831 CrossRefPubMedGoogle Scholar
  27. Hess RA, Nakai M (2000) Histopathology of the male reproductive system induced by the fungicide benomyl. Histol Histopathol 15(1):207–224PubMedGoogle Scholar
  28. Hubbs AF, Mercer RR, Benkovic SA et al (2011) Nanotoxicology – a pathologist’s perspective. Toxicol Pathol 39:301–324CrossRefPubMedGoogle Scholar
  29. Hussain SM, Hess KL (2005) Invitro toxicity of nano-particles in BRL 3A rat liver cells. Toxicol Vitro 19:975–983CrossRefGoogle Scholar
  30. Iavicoli I, Fontana L, Leso V, Bergamaschi A (2013) The Effects of Nanomaterials as Endocrine Disruptors, Review. Int J Mol Sci 14:16732–16801. doi: 10.3390/ijms140816732 CrossRefPubMedPubMedCentralGoogle Scholar
  31. Ioanna KO, Biskos G (2014) Methods for assessing basic particle properties and cytotoxicity of engineered nanoparticles. Toxics 2:79–91CrossRefGoogle Scholar
  32. Kalishwaralal K, Barathmanikanth S, Pandian SR, Deepak V, Gurunathan S (2010) Silver nano-A trove for retinal therapies. J Control Release 145:76–90CrossRefPubMedGoogle Scholar
  33. Kara A, Unal D, Simsek N, Yucel A, Yucel N, Selli J (2014) Ultra-structural changes and apoptotic activity in cerebellum of post-menopausal-diabetic rats: a histochemical and ultra-structural study. J Gynecol Endocrinol 30(3):226–231. doi: 10.3109/09513590.2013.864270 CrossRefGoogle Scholar
  34. Khanlarkhani N, Pasbakhsh P, Mortezaee K, Naji M, Amidi F, Najafi A, Sobhani A, Zendedel A (2016) Effect of human recombinant granulocyte colony-stimulating factor on rat busulfan-induced testis injury. J Mol Histol 47:59–67CrossRefPubMedGoogle Scholar
  35. Kim YS, Kim JS, Cho HS, Rha DS, Kim JM, Park JD, Choi BS, Lim R, Chang HK, Chung YH, Kwon IH, Jeong J, Han BS, Yu IJ (2008) Twenty-eight-day oral toxicity, genotoxicity, and gender-related tissue distribution of silver nanoparticles in Sprague-Dawley rats. Inhal Toxicol 20(6):575–583CrossRefPubMedGoogle Scholar
  36. Kim YS, Song MY, Park JD, Song KS, Ryu HR, Chung YH, Chang HK, Lee JH, Oh KH, Kelman BJ, Hwang IK, Yu IJ (2010) Subchronic oral toxicity of silver nanoparticles. Part Fibre Toxicol 7(1):1–20CrossRefGoogle Scholar
  37. Kim S, Kim S, Lee S et al (2011) Characterization of the effects of silver nanoparticles on liver cells using HR-MAS NMR spectroscopy. Bull Korean Chem Soc 32:2021–2026CrossRefGoogle Scholar
  38. Krawetz SA, De Rooij DG, Hedger MP (2009) Molecular aspects of male fertility. International workshop on molecular andrology. EMBO Rep 10(10):1087–1092CrossRefPubMedPubMedCentralGoogle Scholar
  39. Lan Z, Yang WX (2012) Nanoparticles and spermatogenesis: how do nanoparticles affect spermatogenesis and penetrate the blood–testis barrier. Nanomedicine 7(4):579–596CrossRefPubMedGoogle Scholar
  40. Lee JH, Kim YS, Song KS, Ryu HR, Sung JH, Park JD et al (2013) Biopersistence of silver nanoparticles in tissues from Sprague Dawley rats. Part Fibre Toxicol 10:36CrossRefPubMedPubMedCentralGoogle Scholar
  41. Lim D, Roh JY, Eom HJ et al (2012) Oxidative stress-related PMK- 1 P38 MAPK activation as a mechanism for toxicity of silver nanoparticles to reproduction in the nematode Caenorhabditis elegans. Environ Toxicol Chem 31:585–592CrossRefPubMedGoogle Scholar
  42. Liu TD, Yu BY, Luo FH, Zhang XL, Wu SC, Liu LH, Wu YJ (2012) Gene expression profiling of rat testis development duringthe early postnatal stag. Reprod Domest Anim 47(5):724–731CrossRefPubMedGoogle Scholar
  43. Loeschner K, Hadrup N, Qvortrup K, Larsen A, Gao X, Vogel U, Mortensen A, Lam HR, Larsen EH (2011) Distribution of silver in rats following 28 days of repeated oral exposure to silver nanoparticles or silver acetate. Part Fibre Toxicol 8:18CrossRefPubMedPubMedCentralGoogle Scholar
  44. Lukyanenko YO, Chen JJ, Hutson JC (2001) Production of 25-hydroxycholesterol by testicular macrophages and its effects on Leydig cells. Biol Reprod 64(3):790–796CrossRefPubMedGoogle Scholar
  45. Lukyanenko Y, Chen JJ, Hutson JC (2002) Testosterone regulates 25-hydroxycholesterol production in testicular macrophages. Biol Reprod 67(5):1435–1438CrossRefPubMedGoogle Scholar
  46. Manin OI, Nikolaev VA, Kolomiĭtsev AA, Lebedenko I (2006) Comparative toxicological evaluation of domestic golden alloys for soldering. Stomatologiia 86(1):64–67Google Scholar
  47. McShan D, Ray PC, Yu H (2014) Molecular toxicity mechanism of nanosilver. J Food Drug Anal 22(1):116–127CrossRefPubMedPubMedCentralGoogle Scholar
  48. Miller SC, Bowman BM, Heidi G (1983) Structure, cytochemistry, endocytic activity, and immunoglobulin (Fc) receptors of rat testicular interstitial-tissue macrophages. Rowland Am J Anat 168(1):1–13CrossRefPubMedGoogle Scholar
  49. Miresmaeili SM, Halvaei I, Fesahat F, Fallah A, Nikonahad N, Taherinejad M (2013) Evaluating the role of silver nanoparticles on acrosomal reaction and spermatogenic cells in rat. Iran J Reprod Med 11(5):423–430PubMedPubMedCentralGoogle Scholar
  50. Miura N, Shinohara Y (2009) Cytotoxic effect and apoptosis induction by silver nanoparticles in HeLa cells. Biochem Biophys Res Commun 390:733–737CrossRefPubMedGoogle Scholar
  51. Moaddab S, Ahari H, Shahbazzadeh D, Motallebi A, Anvar A, Rahman-Nya J, Shokrgozar M (2011) Toxicity Study of Nanosilver (Nanocid®) on Osteoblast Cancer Cell Line. Int Nano Lett 1(1):11–16Google Scholar
  52. Mocan T, Clichici S, Agoston-Coldea L, Mocan L, Simon S, Ilie IR, Biris AR, Mures A (2010) Implications of oxidative stress mechanisms in toxicity of nanoparticles: review. Acta Physiol Hung 97(3):247–255CrossRefPubMedGoogle Scholar
  53. Nel A, Xia T, Mädler L, Li N (2006) Toxic potential of materials at the nanolevel. Science 311(5761):622–627CrossRefPubMedGoogle Scholar
  54. Nowack B, Krug HF, Height M (2011) 120 years of nanosilver history: implications for policy makers. Environ Sci Technol 45(4):1177–1183CrossRefPubMedGoogle Scholar
  55. Ong C, Lee QY, Cai Y, Liu X, Ding J, Yung LY, Bay BH, Baeg GH (2016) Silver nanoparticles disrupt germline stem cell maintenance in the Drosophila testis. Sci Rep 6:20632CrossRefPubMedPubMedCentralGoogle Scholar
  56. Orazizadeh M, Khorsandi L, Absalan F, Hashemitabar M, Daneshi E (2014) Effect of beta-carotene on titanium oxide nanoparticles-induced testicular toxicity in mice. J Assist Reprod Genet 31:561–568. doi: 10.1007/s10815-014-0184-5 CrossRefPubMedPubMedCentralGoogle Scholar
  57. Park E, Bae E (2010) Repeated-dose toxicity and inflmmatory responses in mice by oral administration of silver nanoparticles. Environ Toxicol Pharm 30:162–168CrossRefGoogle Scholar
  58. Park HJ, Wang Y (2007) Induction of Oxidative stress by silver Nano-particles in Cultured Leydig Cells. Environ Toxicol 22:57–64Google Scholar
  59. Park EJ, Bae E, Yi J, Kim Y, Choi K, Lee SH, Yoon J, Lee BC, Park K (2010) Repeated-dose toxicity and inflammatory responses in mice by oral administration of silver nanoparticles. Environ Toxicol Pharmacol 30(2):162–168CrossRefPubMedGoogle Scholar
  60. Park K, Park EJ, Chun IK, Choi K, Lee SH, Yoon J, Lee BC (2011) Bioavailability and toxicokinetics of citrate-coated silver nanoparticles in rats. Arch Pharm Res 34(1):153–158CrossRefPubMedGoogle Scholar
  61. Ramos-Vara JA, Kiupel M, Baszier T, Bliven L, Brodersen B, Chelack B et al (2008) Suggested guidelines for immunohistochemical techniques in veterinary diagnostic laboratories. J Vet Diagn Invest 20:393–413CrossRefPubMedGoogle Scholar
  62. Russell LD, Ettlin RA, Sinha Hikim AP, Clegg ED (1990) Mammalian spermatogenesis. Histol Histopathol Eval Test 1:1–40Google Scholar
  63. Ryu JY, Lee BM, Kacew S, Kim HS (2007) Identification of differentially expressed genes in the testis of Sprague-Dawley rats treated with di(n-butyl) phthalate. Toxicology 234:103–112CrossRefPubMedGoogle Scholar
  64. Sardari RR, Zarchi SR, Talebi A et al (2012) Toxicological effects of silver nanoparticles in rats. Afr J Microbiol Res 6:5587–5593Google Scholar
  65. Sarhan O, Hussein R (2014) Effects of Intraperitoneally Injected Silver Nanoparticles on Histological Structures and Blood Parameters in the Albino Rat. Int J Nanomed 9:1505–1517Google Scholar
  66. Sung JH, Ji JH, Park JD, Yoon JU, Kim DS, Jeon KS, Song MY, Jeong J, Han BS, Han JH, Chung YH, Chang HK, Lee JH, Cho MH, Kelman BJ, Yu IJ (2009) Subchronic Inhalation Toxicity of Silver Nanoparticles. Toxicol Sci 108(2):452–461CrossRefPubMedGoogle Scholar
  67. Takeda K, Suzuki KI, Ishihara A, Kubo-Irie M, Fujimoto R, Tabata M et al (2009) Nanoparticles transferred from pregnant mice to their offspring can damage the genital and cranial nerve systems. J Health Sci 55:95–102CrossRefGoogle Scholar
  68. Tang J (2008) Status of biological evaluation on silver nanoparticles. J Biomed Eng 25:958–961Google Scholar
  69. Tang J, Xiong L, Wang S, Wang J, Liu L, Li J, Yuan F, Xi T (2009) Distribution, translocation and accumulation of silver nanoparticles in rats. J Nanosci Nanotechnol 9(8):4924–4932CrossRefPubMedGoogle Scholar
  70. Terzuoli G, Iacoponi F, Moretti E, Renieri T, Baldi G, Collodel G (2011) In vitro effect of silver engineered nanoparticles on human spermatozoa. J Siena Acad Sci 3:27–29CrossRefGoogle Scholar
  71. Thakur M, Gupta H, Singh D, Mohanty IR, Maheswari U, Vanage G, Joshi DS (2014) Histopathological and ultra structural effects of nanoparticles on rat testis following 90 days (Chronic study) of repeated oral administration. J Nanobiotechnol 12(1):1–42CrossRefGoogle Scholar
  72. Tolaymat TM, El Badawy AM, Genaidy A, Scheckel KG, Luxton TP, Suidan M (2010) An evidence-based environmental perspective of manufactured silver nanoparticle in syntheses and applications: a systematic review and critical appraisal of peer-reviewed scientific papers. Sci Total Environ 408(5):999–1006CrossRefPubMedGoogle Scholar
  73. van der Zande M, Vandebriel RJ, Van DE, Kramer E, Herrera RZ, Serrano-Rojero CS, Gremmer ER, Mast J, Peters RJ, Hollman PC, Hendriksen PJ, Marvin HJ, Peijnenburg AA, Bouwmeester H (2012) Distribution, elimination, and toxicity of silver nanoparticles and silver ions in rats after 28-day oral exposure. ACS Nano 6(8):7427–7442CrossRefPubMedGoogle Scholar
  74. Wijnhoven SW, Peijnenburg WJ, Herberts CA, Hagens WI, Oomen AG, Heugens EH, Roszek B, Bisschops J, Gosens I, Van de Meent D, Dekkers S, De Jong WH, Van Zijverden M, Sips AJ, Geertsma RE (2009) Nano–silver–a review of available data and knowledge gaps in human and environmental risk assessment. Nanotoxicol 3(2):109–138CrossRefGoogle Scholar
  75. World Health Organization (2010) WHO Laboratory Manual for the Examination 62 and Processing of Human Semen, 5th edn. World Health Organization, GenevaGoogle Scholar
  76. Xiao L, Xiao YC, Zhi CW, Tong S, Huna Z (2013) Effects of exposure to bisphenol A during pregnancy and lactation on the testicular morphology and caspase-3 protein expression of ICR pups. Biomed Rep 1(3):420–424Google Scholar
  77. Xiu ZM, Ma J, Alvarez PJ (2011) Differential effect of common ligands and molecular oxygen on antimicrobial activity of silver nanoparticles versus silver ions. Environ Sci Technol 45:9003–9008CrossRefPubMedGoogle Scholar
  78. Yen HJ, Hsu SH, Tsai CL (2009) Cytotoxicity and immunological response of gold and silver nanoparticles of different sizes. Small 5:1553–1561CrossRefPubMedGoogle Scholar
  79. Yoshida Y, Itoh N, Saito Y, Hayakawa M, Niki E (2004) Application of water-soluble radical initiator, 2, 2′-azobis-[2-(2-imidazolin-2-yl) propane] dihydrochloride, to a study of oxidative stress. Free Radic Res 38(4):375–384CrossRefPubMedGoogle Scholar
  80. Zhang D, Liu X, Peng J, He D, Lin T, Zhu J, Li X, Zhang Y, Wei G (2014) Potential spermatogenesis recovery with bone marrow mesenchymal stem cells in an azoospermic rat model. Int J Mol Sci 15(8):13151–13165CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Samah M. Ahmed
    • 1
    Email author
  • Shaimaa A. Abdelrahman
    • 1
  • Sally M. Shalaby
    • 2
  1. 1.Department of Histology and Cell Biology, Faculty of MedicineZagazig UniversityZagazigEgypt
  2. 2.Department of Medical Biochemistry, Faculty of MedicineZagazig UniversityZagazigEgypt

Personalised recommendations