Journal of Molecular Histology

, Volume 47, Issue 3, pp 345–351 | Cite as

Odontoblastic inductive potential of epithelial cells derived from human deciduous dental pulp

  • Hye-Kyung Lee
  • Ji-Won Park
  • You-Mi Seo
  • Ha Hoon Kim
  • Gene Lee
  • Hyun-Sook Bae
  • Joo-Cheol ParkEmail author
Original Paper


For the dentin regeneration, dental epithelial cells are indispensible and must possess odontoblastic induction capability. Epithelial cell-like stem cells were recently identified in human deciduous dental pulp (DPESCs). However, their cellular characteristics remain poorly defined. The purpose of this study was to characterize DPESCs compared to HAT-7 ameloblastic cells. Expression levels of ameloblast-specific markers [odontogenic ameloblast-associated protein (Odam), matrix metalloproteinase (Mmp)-20, amelogenin, and ameloblastin] were detected in DPESCs. Co-culturing odontoblastic MDPC-23 cells with DPESCs increased expression of odontoblast differentiation markers (Dmp1 and Dspp) from days 4 to 10, while the expression of bone sialoprotein rapidly decreased. MDPC-23 cells cultured in DPESC-conditioned medium (CM) showed increased Dspp promoter activity compared with control MDPC-23 cultures. Mineralization was first observed in the CM groups from day 4 and proceeded rapidly until day 14, whereas mineralized nodules were found from day 7 in control media-cultured cells. In conclusion, DPESCs in human deciduous pulp possess ameloblast-like characteristics and differentiation properties, and substances derived from DPESCs promote odontoblastic differentiation. Thus, our results indicate that DPESCs can be a realistic epithelial source for use in odontoblastic induction and dentin formation of dental mesenchymal cells.


Dental epithelial cell Deciduous pulp Induction Epithelial-mesenchymal interaction Odontoblast 



This research was supported by the Bio and Medical Technology Development Program of the National Research Foundation (NRF) funded by the Korean government (MSIP) (No. NRF-2013M3A9B2076480).


  1. Butler WT, Brunn JC, Qin C (2003) Dentin extracellular matrix (ECM) proteins: comparison to bone ECM and contribution to dynamics of dentinogenesis. Connect Tissue Res 44(Suppl 1):171–178CrossRefPubMedGoogle Scholar
  2. Choung HW, Lee JH, Lee DS, Choung PH, Park JC (2013) The role of preameloblast-conditioned medium in dental pulp regeneration. J Mol Histol 44:715–721. doi: 10.1007/s10735-013-9513-8 CrossRefPubMedGoogle Scholar
  3. Didilescu AC, Rusu MC, Nini G (2013) Dental pulp as a stem cell reservoir. Rom J Morphol Embryol 54:473–478PubMedGoogle Scholar
  4. Du J, Wang Q, Yang P, Wang X (2016) FHL2 mediates tooth development and human dental pulp cell differentiation into odontoblasts, partially by interacting with Runx2. J Mol Histol 47:195–202. doi: 10.1007/s10735-016-9655-6 CrossRefPubMedGoogle Scholar
  5. Gronthos S, Mankani M, Brahim J, Robey PG, Shi S (2000) Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo. Proc Natl Acad Sci USA 97:13625–13630. doi: 10.1073/pnas.240309797 CrossRefPubMedPubMedCentralGoogle Scholar
  6. Huang GT (2011) Dental pulp and dentin tissue engineering and regeneration: advancement and challenge. Front Biosci (Elite Ed) 3:788–800CrossRefGoogle Scholar
  7. Ikeda E, Morita R, Nakao K, Ishida K, Nakamura T, Takano-Yamamoto T, Ogawa M, Mizuno M, Kasugai S, Tsuji T (2009) Fully functional bioengineered tooth replacement as an organ replacement therapy. Proc Natl Acad Sci USA 106:13475–13480. doi: 10.1073/pnas.0902944106 CrossRefPubMedPubMedCentralGoogle Scholar
  8. Iohara K, Zheng L, Ito M, Tomokiyo A, Matsushita K, Nakashima M (2006) Side population cells isolated from porcine dental pulp tissue with self-renewal and multipotency for dentinogenesis, chondrogenesis, adipogenesis, and neurogenesis. Stem Cells 24:2493–2503. doi: 10.1634/stemcells.2006-0161 CrossRefPubMedGoogle Scholar
  9. Ishimatsu H, Kitamura C, Morotomi T, Tabata Y, Nishihara T, Chen KK, Terashita M (2009) Formation of dentinal bridge on surface of regenerated dental pulp in dentin defects by controlled release of fibroblast growth factor-2 from gelatin hydrogels. J Endod 35:858–865. doi: 10.1016/j.joen.2009.03.049 CrossRefPubMedGoogle Scholar
  10. Kawano S, Morotomi T, Toyono T, Nakamura N, Uchida T, Ohishi M, Toyoshima K, Harada H (2002) Establishment of dental epithelial cell line (HAT-7) and the cell differentiation dependent on Notch signaling pathway. Connect Tissue Res 43:409–412CrossRefPubMedGoogle Scholar
  11. Koch WE (1967) In vitro differentiation of tooth rudiments of embryonic mice. I. Transfilter interaction of embryonic incisor tissues. J Exp Zool 165:155–170. doi: 10.1002/jez.1401650202 CrossRefPubMedGoogle Scholar
  12. Lee DS, Park JT, Kim HM, Ko JS, Son HH, Gronostajski RM, Cho MI, Choung PH, Park JC (2009) Nuclear factor I-C is essential for odontogenic cell proliferation and odontoblast differentiation during tooth root development. J Biol Chem 284:17293–17303. doi: 10.1074/jbc.M109.009084 CrossRefPubMedPubMedCentralGoogle Scholar
  13. Lee JH, Lee DS, Choung HW, Shon WJ, Seo BM, Lee EH, Cho JY, Park JC (2011) Odontogenic differentiation of human dental pulp stem cells induced by preameloblast-derived factors. Biomaterials 32:9696–9706. doi: 10.1016/j.biomaterials.2011.09.007 CrossRefPubMedGoogle Scholar
  14. Lee HK, Park JT, Cho YS, Bae HS, Cho MI, Park JC (2012) Odontogenic ameloblasts-associated protein (ODAM), via phosphorylation by bone morphogenetic protein receptor type IB (BMPR-IB), is implicated in ameloblast differentiation. J Cell Biochem 113:1754–1765. doi: 10.1002/jcb.24047 PubMedGoogle Scholar
  15. Lian M, Zhang Y, Shen Q, Xing J, Lu X, Huang D, Cao P, Shen S, Zheng K, Zhang J, Chen J, Wang Y, Feng G, Feng X (2016) JAB1 accelerates odontogenic differentiation of dental pulp stem cells. J Mol Histol. doi: 10.1007/s10735-016-9672-5 PubMedGoogle Scholar
  16. Mathieu S, Jeanneau C, Sheibat-Othman N, Kalaji N, Fessi H, About I (2013) Usefulness of controlled release of growth factors in investigating the early events of dentin-pulp regeneration. J Endod 39:228–235. doi: 10.1016/j.joen.2012.11.007 CrossRefPubMedGoogle Scholar
  17. Nam H, Lee G (2009) Identification of novel epithelial stem cell-like cells in human deciduous dental pulp. Biochem Biophys Res Commun 386:135–139. doi: 10.1016/j.bbrc.2009.05.141 CrossRefPubMedGoogle Scholar
  18. Park SJ, Bae HS, Park JC (2015) Osteogenic differentiation and gene expression profile of human dental follicle cells induced by human dental pulp cells. J Mol Histol 46:93–106. doi: 10.1007/s10735-014-9604-1 CrossRefPubMedGoogle Scholar
  19. Qin Z, Fang Z, Zhao L, Chen J, Li Y, Liu G (2015) High dose of TNF-alpha suppressed osteogenic differentiation of human dental pulp stem cells by activating the Wnt/beta-catenin signaling. J Mol Histol 46:409–420. doi: 10.1007/s10735-015-9630-7 CrossRefPubMedGoogle Scholar
  20. Smith CE, Warshawsky H (1977) Quantitative analysis of cell turnover in the enamel organ of the rat incisor. Evidence for ameloblast death immediately after enamel matrix secretion. Anat Rec 187:63–98. doi: 10.1002/ar.1091870106 CrossRefPubMedGoogle Scholar
  21. Sonoyama W, Liu Y, Fang D, Yamaza T, Seo BM, Zhang C, Liu H, Gronthos S, Wang CY, Wang S, Shi S (2006) Mesenchymal stem cell-mediated functional tooth regeneration in swine. PLoS ONE 1:e79. doi: 10.1371/journal.pone.0000079 CrossRefPubMedPubMedCentralGoogle Scholar
  22. Thesleff I, Hurmerinta K (1981) Tissue interactions in tooth development. Differentiation 18:75–88CrossRefPubMedGoogle Scholar
  23. Thesleff I, Vaahtokari A, Kettunen P, Aberg T (1995a) Epithelial-mesenchymal signaling during tooth development. Connect Tissue Res 32:9–15CrossRefPubMedGoogle Scholar
  24. Thesleff I, Vaahtokari A, Partanen AM (1995b) Regulation of organogenesis. Common molecular mechanisms regulating the development of teeth and other organs. Int J Dev Biol 39:35–50PubMedGoogle Scholar
  25. Tziafas D, Belibasakis G, Veis A, Papadimitriou S (2001) Dentin regeneration in vital pulp therapy: design principles. Adv Dent Res 15:96–100CrossRefPubMedGoogle Scholar
  26. Yamaza T, Ren G, Akiyama K, Chen C, Shi Y, Shi S (2011) Mouse mandible contains distinctive mesenchymal stem cells. J Dent Res 90:317–324. doi: 10.1177/0022034510387796 CrossRefPubMedPubMedCentralGoogle Scholar
  27. Yu J, Deng Z, Shi J, Zhai H, Nie X, Zhuang H, Li Y, Jin Y (2006) Differentiation of dental pulp stem cells into regular-shaped dentin-pulp complex induced by tooth germ cell conditioned medium. Tissue Eng 12:3097–3105. doi: 10.1089/ten.2006.12.3097 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Hye-Kyung Lee
    • 1
  • Ji-Won Park
    • 2
  • You-Mi Seo
    • 1
  • Ha Hoon Kim
    • 1
  • Gene Lee
    • 3
  • Hyun-Sook Bae
    • 4
  • Joo-Cheol Park
    • 1
    Email author
  1. 1.Department of Oral Histology-Developmental Biology and Dental Research Institute, School of DentistrySeoul National UniversitySeoulRepublic of Korea
  2. 2.Department of Orthodontics, School of DentistrySeoul National UniversitySeoulRepublic of Korea
  3. 3.Laboratory of Molecular Genetics and Stem Cell Differentiation, Dental Research Institute, School of DentistrySeoul National UniversitySeoulRepublic of Korea
  4. 4.Department of Dental HygieneNamseoul UniversityCheonanRepublic of Korea

Personalised recommendations