Advertisement

Journal of Molecular Histology

, Volume 47, Issue 2, pp 153–168 | Cite as

The angiogenic variation of skeletal site-specific human BMSCs from same alveolar cleft patients: a comparative study

  • Yifei Du
  • Fei Jiang
  • Yi Liang
  • Yuli Wang
  • Weina Zhou
  • Yongchu Pan
  • Mingfei Xue
  • Yan Peng
  • Huan Yuan
  • Ning ChenEmail author
  • Hongbing JiangEmail author
Original Paper

Abstract

Tissue engineering strategies hold great potential for alveolar cleft reconstruction. Bone marrow stromal cells (BMSCs) from iliac crest and craniofacial regions are candidate seeding cells with site-specific characteristics and bone-repairing properties. Craniofacial BMSCs seem to possess stronger multipotency and osteogenic capabilities than BMSCs isolated from iliac crest. However, the angiogenic capabilities of these two type cell is rarely reported. We obtained human BMSCs (hBMSCs) of maxilla (M-hBMSCs) and iliac crest (I-hBMSCs) from same alveolar cleft patients to investigate the agiogenic variations using co-culture system with human umbilical vein endothelial cells (HUVECs). From in vitro comparison, M-hBMSCs allowed HUVECs to form more tube-like structures and sprouting angiogenesis by tube formation assays and 3D fibrin vasculogenic assay, respectively. By transplantation in vivo, M-hBMSCs enhanced larger size vessel like structures distributed the entire implants compared with I-hBMSCs. Western blotting was used to assess the angiogenesis related factors including hepatocyte growth factor (HGF), vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (bFGF). The results showed a significant higher expression of bFGF protein in M-hBMSCs and HUVECs co-culture system both in vitro and in vivo. As bFGF could promote migration and proliferation of endothelial cells, scratch wound healing and transwell migration assays were performed as well as MTT assays and cell cycle analysis. The data suggested the effect of M-hBMSCs on HUVECs was stronger than I-hBMSCs. Taken together, these results indicated that craniofacial BMSCs seemed to have greater angiogenesis capability than iliac crest BMSCs and this might be associated with the different levels of bFGF protein expression in co-culture system.

Keywords

Alveolar cleft graft Angiogenesis Human bone marrow mesenchymal stem cells (hBMSCs) Site-specific characteristic Co-culture Basic fibroblast growth factor (bFGF) 

Notes

Acknowledgments

This study was supported in part by the National Basic Research Program of China (2012CB966902), the National Natural Science Foundation of China (81271109), The Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD, 2014-37) and The Project Funded by Jiangsua Provincial Commission of Health and Family Planning (Z201511).

Compliance with ethical standards

Conflict of interests

The authors declare that there is no conflict of interests regarding the publication of this paper.

References

  1. Aghaloo TL, Chaichanasakul T, Bezouglaia O, Kang B, Franco R, Dry SM, Atti E, Tetradis S (2010) Osteogenic potential of mandibular vs. long-bone marrow stromal cells. J Dent Res 89(11):1293–1298. doi: 10.1177/0022034510378427 CrossRefPubMedPubMedCentralGoogle Scholar
  2. Akintoye SO, Lam T, Shi S, Brahim J, Collins MT, Robey PG (2006) Skeletal site-specific characterization of orofacial and iliac crest human bone marrow stromal cells in same individuals. Bone 38(6):758–768. doi: 10.1016/j.bone.2005.10.027 CrossRefPubMedGoogle Scholar
  3. Akintoye SO, Giavis P, Stefanik D, Levin L, Mante FK (2008) Comparative osteogenesis of maxilla and iliac crest human bone marrow stromal cells attached to oxidized titanium: a pilot study. Clin Oral Implants Res 19(11):1197–1201. doi: 10.1111/j.1600-0501.2008.01592.x CrossRefPubMedPubMedCentralGoogle Scholar
  4. Alard JE, Dueymes M, Mageed RA, Saraux A, Youinou P, Jamin C (2009) Mitochondrial heat shock protein (HSP) 70 synergizes with HSP60 in transducing endothelial cell apoptosis induced by anti-HSP60 autoantibody. FASEB J 23(8):2772–2779. doi: 10.1096/fj.08-128785 CrossRefPubMedGoogle Scholar
  5. Aronson J (1994) Temporal and spatial increases in blood flow during distraction osteogenesis. Clin Orthop Relat Res 301:124–131PubMedGoogle Scholar
  6. Au P, Tam J, Fukumura D, Jain RK (2008) Bone marrow-derived mesenchymal stem cells facilitate engineering of long-lasting functional vasculature. Blood 111(9):4551–4558. doi: 10.1182/blood-2007-10-118273 CrossRefPubMedPubMedCentralGoogle Scholar
  7. Beck L Jr, D’Amore PA (1997) Vascular development: cellular and molecular regulation. FASEB J 11(5):365–373PubMedGoogle Scholar
  8. Carmeliet P, Jain RK (2011) Molecular mechanisms and clinical applications of angiogenesis. Nature 473(7347):298–307. doi: 10.1038/nature10144 CrossRefPubMedPubMedCentralGoogle Scholar
  9. Chai Y, Jiang X, Ito Y, Bringas P Jr, Han J, Rowitch DH, Soriano P, McMahon AP, Sucov HM (2000) Fate of the mammalian cranial neural crest during tooth and mandibular morphogenesis. Development 127(8):1671–1679PubMedGoogle Scholar
  10. Chaichanasakul T, Kang B, Bezouglaia O, Aghaloo TL, Tetradis S (2014) Diverse osteoclastogenesis of bone marrow from mandible versus long bone. J Periodontol 85(6):829–836. doi: 10.1902/jop.2013.130376 CrossRefPubMedPubMedCentralGoogle Scholar
  11. Chim SM, Qin A, Tickner J, Pavlos N, Davey T, Wang H, Guo Y, Zeng MH, Xu J (2011) EGFL6 promotes endothelial cell migration and angiogenesis through the activation of extracellular signal-regulated kinase. J Biol Chem 286(25):22035–22046. doi: 10.1074/jbc.M110.187633 CrossRefPubMedPubMedCentralGoogle Scholar
  12. Covas DT, Panepucci RA, Fontes AM, Silva WA Jr, Orellana MD, Freitas MC, Neder L, Santos AR, Peres LC, Jamur MC, Zago MA (2008) Multipotent mesenchymal stromal cells obtained from diverse human tissues share functional properties and gene-expression profile with CD146+ perivascular cells and fibroblasts. Exp Hematol 36(5):642–654. doi: 10.1016/j.exphem.2007.12.015 CrossRefPubMedGoogle Scholar
  13. Crisan M, Yap S, Casteilla L, Chen CW, Corselli M, Park TS, Andriolo G, Sun B, Zheng B, Zhang L, Norotte C, Peault B (2008) A perivascular origin for mesenchymal stem cells in multiple human organs. Cell Stem Cell 3(3):301–313. doi: 10.1016/j.stem.2008.07.003 CrossRefPubMedGoogle Scholar
  14. Dai L, Zhu J, Mao M, Li Y, Deng Y, Wang Y, Liang J, Tang L, Wang H, Kilfoy BA, Zheng T (2010) Time trends in oral clefts in Chinese newborns: data from the Chinese National Birth Defects Monitoring Network. Birth Defects Res A Clin Mol Teratol 88(1):41–47. doi: 10.1002/bdra.20607 PubMedPubMedCentralGoogle Scholar
  15. Davis GE, Stratman AN, Sacharidou A, Koh W (2011) Molecular basis for endothelial lumen formation and tubulogenesis during vasculogenesis and angiogenic sprouting. Int Rev Cell Mol Biol 288:101–165. doi: 10.1016/B978-0-12-386041-5.00003-0 CrossRefPubMedPubMedCentralGoogle Scholar
  16. Deshpande SS, Gallagher KK, Donneys A, Tchanque-Fossuo CN, Sarhaddi D, Sun H, Krebsbach PH, Buchman SR (2013) Stem cell therapy remediates reconstruction of the craniofacial skeleton after radiation therapy. Stem Cells Dev 22(11):1625–1632. doi: 10.1089/scd.2012.0472 CrossRefPubMedPubMedCentralGoogle Scholar
  17. Dilling CF, Wada AM, Lazard ZW, Salisbury EA, Gannon FH, Vadakkan TJ, Gao L, Hirschi K, Dickinson ME, Davis AR, Olmsted-Davis EA (2010) Vessel formation is induced prior to the appearance of cartilage in BMP-2-mediated heterotopic ossification. J Bone Miner Res 25(5):1147–1156. doi: 10.1359/jbmr.091031 PubMedPubMedCentralGoogle Scholar
  18. Dixon MJ, Marazita ML, Beaty TH, Murray JC (2011) Cleft lip and palate: understanding genetic and environmental influences. Nat Rev Genet 12(3):167–178. doi: 10.1038/nrg2933 CrossRefPubMedPubMedCentralGoogle Scholar
  19. Dong W, Ge J, Zhang P, Fu Y, Zhang Z, Cheng J, Jiang H (2014) Phenotypic characterization of craniofacial bone marrow stromal cells: unique properties of enhanced osteogenesis, cell recruitment, autophagy, and apoptosis resistance. Cell Tissue Res 358(1):165–175. doi: 10.1007/s00441-014-1927-4 CrossRefPubMedGoogle Scholar
  20. Dong W, Zhang P, Fu Y, Ge J, Cheng J, Yuan H, Jiang H (2015) Roles of SATB2 in site-specific stemness, autophagy and senescence of bone marrow mesenchymal stem cells. J Cell Physiol 230(3):680–690. doi: 10.1002/jcp.24792 CrossRefPubMedGoogle Scholar
  21. Ghajar CM, Blevins KS, Hughes CC, George SC, Putnam AJ (2006) Mesenchymal stem cells enhance angiogenesis in mechanically viable prevascularized tissues via early matrix metalloproteinase upregulation. Tissue Eng 12(10):2875–2888. doi: 10.1089/ten.2006.12.2875 CrossRefPubMedGoogle Scholar
  22. Gnecchi M, Zhang Z, Ni A, Dzau VJ (2008) Paracrine mechanisms in adult stem cell signaling and therapy. Circ Res 103(11):1204–1219. doi: 10.1161/circresaha.108.176826 CrossRefPubMedPubMedCentralGoogle Scholar
  23. Grainger SJ, Carrion B, Ceccarelli J, Putnam AJ (2013) Stromal cell identity influences the in vivo functionality of engineered capillary networks formed by co-delivery of endothelial cells and stromal cells. Tissue Eng Part A 19(9–10):1209–1222. doi: 10.1089/ten.TEA.2012.0281 CrossRefPubMedPubMedCentralGoogle Scholar
  24. Hsiao ST, Asgari A, Lokmic Z, Sinclair R, Dusting GJ, Lim SY, Dilley RJ (2012) Comparative analysis of paracrine factor expression in human adult mesenchymal stem cells derived from bone marrow, adipose, and dermal tissue. Stem Cells Dev 21(12):2189–2203. doi: 10.1089/scd.2011.0674 CrossRefPubMedPubMedCentralGoogle Scholar
  25. Janssen NG, Weijs WL, Koole R, Rosenberg AJ, Meijer GJ (2014) Tissue engineering strategies for alveolar cleft reconstruction: a systematic review of the literature. Clin Oral Investig 18(1):219–226. doi: 10.1007/s00784-013-0947-x CrossRefPubMedGoogle Scholar
  26. Jiang F, Ma J, Liang Y, Niu Y, Chen N, Shen M (2015) Amniotic mesenchymal stem cells can enhance angiogenic capacity via MMPs in vitro and in vivo. Biomed Res Int 2015:324014. doi: 10.1155/2015/324014 PubMedPubMedCentralGoogle Scholar
  27. Kachgal S, Putnam AJ (2011) Mesenchymal stem cells from adipose and bone marrow promote angiogenesis via distinct cytokine and protease expression mechanisms. Angiogenesis 14(1):47–59. doi: 10.1007/s10456-010-9194-9 CrossRefPubMedPubMedCentralGoogle Scholar
  28. Kaigler D, Pagni G, Park C-H, Tarle SA, Bartel RL, Giannobile WV (2010) Angiogenic and osteogenic potential of bone repair cells for craniofacial regeneration. Tissue Eng Part A 16(9):2809–2820. doi: 10.1089/ten.tea.2010.0079 CrossRefPubMedPubMedCentralGoogle Scholar
  29. Koole R (1994) Ectomesenchymal mandibular symphysis bone graft: an improvement in alveolar cleft grafting? Cleft Palate Craniofac J 31(3):217–223. doi: 10.1597/1545-1569(1994)031<0217:EMSBGA>2.3.CO;2 CrossRefPubMedGoogle Scholar
  30. Koole R, Bosker H, van der Dussen FN (1989) Late secondary autogenous bone grafting in cleft patients comparing mandibular (ectomesenchymal) and iliac crest (mesenchymal) grafts. J Craniomaxillofac Surg 17(Suppl 1):28–30CrossRefPubMedGoogle Scholar
  31. Leucht P, Kim JB, Amasha R, James AW, Girod S, Helms JA (2008) Embryonic origin and Hox status determine progenitor cell fate during adult bone regeneration. Development 135(17):2845–2854. doi: 10.1242/dev.023788 CrossRefPubMedGoogle Scholar
  32. Li Q, Wang Z (2013) Influence of mesenchymal stem cells with endothelial progenitor cells in co-culture on osteogenesis and angiogenesis: an in vitro study. Arch Med Res 44(7):504–513. doi: 10.1016/j.arcmed.2013.09.009 CrossRefPubMedGoogle Scholar
  33. Lin CS, Lue TF (2013) Defining vascular stem cells. Stem Cells Dev 22(7):1018–1026. doi: 10.1089/scd.2012.0504 CrossRefPubMedPubMedCentralGoogle Scholar
  34. Lin RZ, Moreno-Luna R, Zhou B, Pu WT, Melero-Martin JM (2012) Equal modulation of endothelial cell function by four distinct tissue-specific mesenchymal stem cells. Angiogenesis 15(3):443–455. doi: 10.1007/s10456-012-9272-2 CrossRefPubMedPubMedCentralGoogle Scholar
  35. Ma J, Yang F, Both SK, Prins HJ, Helder MN, Pan J, Cui FZ, Jansen JA, van den Beucken JJ (2014) In vitro and in vivo angiogenic capacity of BM-MSCs/HUVECs and AT-MSCs/HUVECs cocultures. Biofabrication 6(1):015005. doi: 10.1088/1758-5082/6/1/015005 CrossRefPubMedGoogle Scholar
  36. Makanya AN, Hlushchuk R, Djonov VG (2009) Intussusceptive angiogenesis and its role in vascular morphogenesis, patterning, and remodeling. Angiogenesis 12(2):113–123. doi: 10.1007/s10456-009-9129-5 CrossRefPubMedGoogle Scholar
  37. Matsubara T, Suardita K, Ishii M, Sugiyama M, Igarashi A, Oda R, Nishimura M, Saito M, Nakagawa K, Yamanaka K, Kato Y (2004) Alveolar bone marrow as a cell source for regenerative medicine: differences between alveolar and iliac bone marrow stromal cells. J Bone Miner Res 20(3):399–409. doi: 10.1359/jbmr.041117 CrossRefPubMedGoogle Scholar
  38. Matsubara H, Hogan DE, Morgan EF, Mortlock DP, Einhorn TA, Gerstenfeld LC (2012) Vascular tissues are a primary source of BMP2 expression during bone formation induced by distraction osteogenesis. Bone 51(1):168–180. doi: 10.1016/j.bone.2012.02.017 CrossRefPubMedPubMedCentralGoogle Scholar
  39. Mikoya T, Inoue N, Matsuzawa Y, Totsuka Y, Kajii TS, Hirosawa T (2010) Monocortical mandibular bone grafting for reconstruction of alveolar cleft. Cleft Palate Craniofac J 47(5):454–468. doi: 10.1597/09-172 CrossRefPubMedGoogle Scholar
  40. Osyczka AM, Damek-Poprawa M, Wojtowicz A, Akintoye SO (2009) Age and skeletal sites affect BMP-2 responsiveness of human bone marrow stromal cells. Connect Tissue Res 50(4):270–277. doi: 10.1080/03008200902846262 CrossRefPubMedPubMedCentralGoogle Scholar
  41. Picchi J, Trombi L, Spugnesi L, Barachini S, Maroni G, Brodano GB, Boriani S, Valtieri M, Petrini M, Magli MC (2013) HOX and TALE signatures specify human stromal stem cell populations from different sources. J Cell Physiol 228(4):879–889. doi: 10.1002/jcp.24239 CrossRefPubMedGoogle Scholar
  42. Roubelakis MG, Tsaknakis G, Pappa KI, Anagnou NP, Watt SM (2013) Spindle shaped human mesenchymal stem/stromal cells from amniotic fluid promote neovascularization. PLoS ONE 8(1):e54747. doi: 10.1371/journal.pone.0054747 CrossRefPubMedPubMedCentralGoogle Scholar
  43. Sacchetti B, Funari A, Michienzi S, Di Cesare S, Piersanti S, Saggio I, Tagliafico E, Ferrari S, Robey PG, Riminucci M, Bianco P (2007) Self-renewing osteoprogenitors in bone marrow sinusoids can organize a hematopoietic microenvironment. Cell 131(2):324–336. doi: 10.1016/j.cell.2007.08.025 CrossRefPubMedGoogle Scholar
  44. Schaaf H, Lendeckel S, Howaldt HP, Streckbein P (2010) Donor site morbidity after bone harvesting from the anterior iliac crest. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 109(1):52–58. doi: 10.1016/j.tripleo.2009.08.023 CrossRefPubMedGoogle Scholar
  45. Seghezzi G, Patel S, Ren CJ, Gualandris A, Pintucci G, Robbins ES, Shapiro RL, Galloway AC, Rifkin DB, Mignatti P (1998) Fibroblast growth factor-2 (FGF-2) induces vascular endothelial growth factor (VEGF) expression in the endothelial cells of forming capillaries: an autocrine mechanism contributing to angiogenesis. J Cell Biol 141(7):1659–1673CrossRefPubMedPubMedCentralGoogle Scholar
  46. Sindet-Pedersen S, Enemark H (1990) Reconstruction of alveolar clefts with mandibular or iliac crest bone grafts: a comparative study. J Oral Maxillofac Surg 48(6):554–558 (discussion 559–560) CrossRefPubMedGoogle Scholar
  47. Smith AO, Bowers SL, Stratman AN, Davis GE (2013) Hematopoietic stem cell cytokines and fibroblast growth factor-2 stimulate human endothelial cell-pericyte tube co-assembly in 3D fibrin matrices under serum-free defined conditions. PLoS ONE 8(12):e85147. doi: 10.1371/journal.pone.0085147 CrossRefPubMedPubMedCentralGoogle Scholar
  48. Stefanik D, Sarin J, Lam T, Levin L, Leboy PS, Akintoye SO (2008) Disparate osteogenic response of mandible and iliac crest bone marrow stromal cells to pamidronate. Oral Dis 14(5):465–471CrossRefPubMedPubMedCentralGoogle Scholar
  49. Street J, Bao M, deGuzman L, Bunting S, Peale FV Jr, Ferrara N, Steinmetz H, Hoeffel J, Cleland JL, Daugherty A, van Bruggen N, Filvaroff EH (2002) Vascular endothelial growth factor stimulates bone repair by promoting angiogenesis and bone turnover. Proc Natl Acad Sci USA 99(15):9656–9661. doi: 10.1073/pnas.152324099 CrossRefPubMedPubMedCentralGoogle Scholar
  50. Wang KC, Helms JA, Chang HY (2009) Regeneration, repair and remembering identity: the three Rs of Hox gene expression. Trends Cell Biol 19(6):268–275. doi: 10.1016/j.tcb.2009.03.007 CrossRefPubMedPubMedCentralGoogle Scholar
  51. Watt SM, Athanassopoulos A, Harris AL, Tsaknakis G (2010) Human endothelial stem/progenitor cells, angiogenic factors and vascular repair. J R Soc Interface 7(Suppl 6):S731–S751. doi: 10.1098/rsif.2010.0377.focus CrossRefPubMedPubMedCentralGoogle Scholar
  52. Watt SM, Gullo F, van der Garde M, Markeson D, Camicia R, Khoo CP, Zwaginga JJ (2013) The angiogenic properties of mesenchymal stem/stromal cells and their therapeutic potential. Br Med Bull 108:25–53. doi: 10.1093/bmb/ldt031 CrossRefPubMedPubMedCentralGoogle Scholar
  53. Zhang P, Men J, Fu Y, Shan T, Ye J, Wu Y, Tao Z, Liu L, Jiang H (2012) Contribution of SATB2 to the stronger osteogenic potential of bone marrow stromal cells from craniofacial bones. Cell Tissue Res 350(3):425–437. doi: 10.1007/s00441-012-1487-4 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Yifei Du
    • 1
    • 2
  • Fei Jiang
    • 1
    • 2
  • Yi Liang
    • 1
    • 2
  • Yuli Wang
    • 1
    • 2
  • Weina Zhou
    • 1
    • 3
  • Yongchu Pan
    • 1
    • 4
  • Mingfei Xue
    • 1
    • 2
  • Yan Peng
    • 1
    • 2
  • Huan Yuan
    • 1
    • 2
  • Ning Chen
    • 1
    • 2
    Email author
  • Hongbing Jiang
    • 1
    • 2
    Email author
  1. 1.Jiangsu Key Laboratory of Oral DiseasesNanjing Medical UniversityNanjingPeople’s Republic of China
  2. 2.Department of Oral and Maxillofacial Surgery, Affiliated Hospital of StomatologyNanjing Medical UniversityNanjingPeople’s Republic of China
  3. 3.Department of Polyclinic Dentistry, Affiliated Hospital of StomatologyNanjing Medical UniversityNanjingPeople’s Republic of China
  4. 4.Department of Orthodontics, Affiliated Hospital of StomatologyNanjing Medical UniversityNanjingPeople’s Republic of China

Personalised recommendations