Journal of Molecular Histology

, Volume 45, Issue 3, pp 321–327 | Cite as

INS-1 cells inhibit the production of extracellular matrix from pancreatic stellate cells

  • Fengfei Li
  • Bijun Chen
  • Ling Li
  • Min Zha
  • S. Zhou
  • Tongzhi Wu
  • M. G. Bachem
  • Zilin SunEmail author
Original Paper


In type 2 diabetes mellitus, pancreatic stellate cells (PSCs) are present within and surrounding pancreatic islets and may cause progressive fibrosis and deterioration of pancreatic beta cell function. However, it is unknown whether pancreatic beta cells influence the biological behavior of PSCs. In the present study, we examined the impact of pancreatic beta cells on the proliferation, migration and extracellular matrix (ECM) production of PSCs. PSCs were treated with conditioned media from INS-1 cells (supernatant, SN). Although the proliferation of PSCs incubated with INS-1-SN was increased compared to control, INS-1-SN treatment induced matrix metalloproteinase-2 activity and reduced the production of ECM and TGF-β1. In addition, PSCs treated with INS-1-SN reduced the secretion of cytokines that are known to mediate pancreatic beta cell death, such as FADD, Fas, IFN-γ, IL-1, TNF-α, and TRAIL. Our findings suggest that pancreatic beta cells may ameliorate islet fibrosis and the progression of islet dysfunction.


Pancreatic stellate cells INS-1 cells Extracellular matrix Type 2 diabetes mellitus 



The authors are grateful to Drs. Rennian Wang and Peter M. Jones for their critical comments on the manuscript. The authors thank Hansjoerg Habisch, Jing Lu and Gisela Sailer for technical assistance. The work was supported by the National Nature Science Foundation of China (Nos.: 30971399, 81170716 and 81270010).

Conflict of interest

The authors declare that they have no competing interests.


  1. Andoh A, Takaya H, Saotome T, Shimada M, Hata K, Araki Y, Nakamura F, Shintani Y, Fujiyama Y, Bamba T (2000) Cytokine regulation of chemokine (IL-8, MCP-1, and RANTES) gene expression in human pancreatic periacinar myofibroblasts. Gastroenterology 119(1):211–219CrossRefPubMedGoogle Scholar
  2. Apte MV, Wilson JS (2003) Alcohol-induced pancreatic injury. Best Pract Res Clin Gastroenterol 17(4):593–612CrossRefPubMedGoogle Scholar
  3. Apte MV, Wilson JS (2012) Dangerous liaisons: pancreatic stellate cells and pancreatic cancer cells. J Gastroenterol Hepatol 27(Suppl 2):69–74CrossRefPubMedGoogle Scholar
  4. Apte MV, Haber PS, Applegate TL, Norton ID, McCaughan GW, Korsten MA, Pirola RC, Wilson JS (1998) Periacinar stellate shaped cells in rat pancreas: identification, isolation, and culture. Gut 43(1):128–133PubMedCentralCrossRefPubMedGoogle Scholar
  5. Apte MV, Haber PS, Darby SJ, Rodgers SC, McCaughan GW, Korsten MA, Pirola RC, Wilson JS (1999) Pancreatic stellate cells are activated by proinflammatory cytokines: implications for pancreatic fibrogenesis. Gut 44(4):534–541PubMedCentralCrossRefPubMedGoogle Scholar
  6. Apte MV, Park S, Phillips PA, Santucci N, Goldstein D, Kumar RK, Ramm GA, Buchler M, Friess H, McCarroll JA, Keogh G, Merrett N, Pirola R, Wilson JS (2004) Desmoplastic reaction in pancreatic cancer: role of pancreatic stellate cells. Pancreas 29(3):179–187CrossRefPubMedGoogle Scholar
  7. Apte M, Pirola R, Wilson J (2011) The fibrosis of chronic pancreatitis: new insights into the role of pancreatic stellate cells. Antioxid Redox Signal 15(10):2711–2722CrossRefPubMedGoogle Scholar
  8. Bachem MG, Schneider E, Gross H, Weidenbach H, Schmid RM, Menke A, Siech M, Beger H, Grunert A, Adler G (1998) Identification, culture, and characterization of pancreatic stellate cells in rats and humans. Gastroenterology 115(2):421–432CrossRefPubMedGoogle Scholar
  9. Bachem MG, Zhou Z, Zhou S, Siech M (2006) Role of stellate cells in pancreatic fibrogenesis associated with acute and chronic pancreatitis. J Gastroenterol Hepatol 21(Suppl 3):S92–S96CrossRefPubMedGoogle Scholar
  10. Corcoran ML, Hewitt RE, Kleiner DE Jr, Stetler-Stevenson WG (1996) MMP-2: expression, activation and inhibition. Enzyme Protein 49(1–3):7–19PubMedGoogle Scholar
  11. Gong J, Zhang G, Tian F, Wang Y (2012) Islet-derived stem cells from adult rats participate in the repair of islet damage. J Mol Histol 43(6):745–750CrossRefPubMedGoogle Scholar
  12. Haber PS, Keogh GW, Apte MV, Moran CS, Stewart NL, Crawford DH, Pirola RC, McCaughan GW, Ramm GA, Wilson JS (1999) Activation of pancreatic stellate cells in human and experimental pancreatic fibrosis. Am J Pathol 155(4):1087–1095PubMedCentralCrossRefPubMedGoogle Scholar
  13. Hong OK, Lee SH, Rhee M, Ko SH, Cho JH, Choi YH, Song KH, Son HY, Yoon KH (2007) Hyperglycemia and hyperinsulinemia have additive effects on activation and proliferation of pancreatic stellate cells: possible explanation of islet-specific fibrosis in type 2 diabetes mellitus. J Cell Biochem 101(3):665–675CrossRefPubMedGoogle Scholar
  14. Karlsen AE, Ronn SG, Lindberg K, Johannesen J, Galsgaard ED, Pociot F, Nielsen JH, Mandrup-Poulsen T, Nerup J, Billestrup N (2001) Suppressor of cytokine signaling 3 (SOCS-3) protects beta-cells against interleukin-1beta—and interferon-gamma-mediated toxicity. Proc Natl Acad Sci USA 98(21):12191–12196PubMedCentralCrossRefPubMedGoogle Scholar
  15. Kikuta K, Masamune A, Satoh M, Suzuki N, Satoh K, Shimosegawa T (2006) Hydrogen peroxide activates activator protein-1 and mitogen-activated protein kinases in pancreatic stellate cells. Mol Cell Biochem 291(1–2):11–20CrossRefPubMedGoogle Scholar
  16. Kikuta K, Masamune A, Hamada S, Takikawa T, Nakano E, Shimosegawa T (2013) Pancreatic stellate cells reduce insulin expression and induce apoptosis in pancreatic beta-cells. Biochem Biophys Res Commun 433(3):292–297CrossRefPubMedGoogle Scholar
  17. Kim JW, Ko SH, Cho JH, Sun C, Hong OK, Lee SH, Kim JH, Lee KW, Kwon HS, Lee JM, Song KH, Son HY, Yoon KH (2008) Loss of beta-cells with fibrotic islet destruction in type 2 diabetes mellitus. Front Biosci 13:6022–6033CrossRefPubMedGoogle Scholar
  18. Klonowski-Stumpe H, Fischer R, Reinehr R, Luthen R, Haussinger D (2002) Apoptosis in activated rat pancreatic stellate cells. Am J Physiol Gastrointest Liver Physiol 283(3):G819–G826CrossRefPubMedGoogle Scholar
  19. Ko SH, Kwon HS, Kim SR, Moon SD, Ahn YB, Song KH, Son HS, Cha BY, Lee KW, Son HY, Kang SK, Park CG, Lee IK, Yoon KH (2004) Ramipril treatment suppresses islet fibrosis in Otsuka Long-Evans Tokushima fatty rats. Biochem Biophys Res Commun 316(1):114–122CrossRefPubMedGoogle Scholar
  20. Ko SH, Hong OK, Kim JW, Ahn YB, Song KH, Cha BY, Son HY, Kim MJ, Jeong IK, Yoon KH (2006) High glucose increases extracellular matrix production in pancreatic stellate cells by activating the renin-angiotensin system. J Cell Biochem 98(2):343–355CrossRefPubMedGoogle Scholar
  21. Krammer PH (2000) CD95′s deadly mission in the immune system. Nature 407(6805):789–795CrossRefPubMedGoogle Scholar
  22. Mandrup-Poulsen T (2001) beta-cell apoptosis: stimuli and signaling. Diabetes 50(Suppl 1):S58–S63CrossRefPubMedGoogle Scholar
  23. Masamune A, Kikuta K, Satoh M, Sakai Y, Satoh A, Shimosegawa T (2002) Ligands of peroxisome proliferator-activated receptor-gamma block activation of pancreatic stellate cells. J Biol Chem 277(1):141–147CrossRefPubMedGoogle Scholar
  24. Masuyama T, Komeda K, Hara A, Noda M, Shinohara M, Oikawa T, Kanazawa Y, Taniguchi K (2004) Chronological characterization of diabetes development in male spontaneously diabetic Torii rats. Biochem Biophys Res Commun 314(3):870–877CrossRefPubMedGoogle Scholar
  25. McCarroll JA, Phillips PA, Santucci N, Pirola RC, Wilson JS, Apte MV (2006) Vitamin A inhibits pancreatic stellate cell activation: implications for treatment of pancreatic fibrosis. Gut 55(1):79–89PubMedCentralCrossRefPubMedGoogle Scholar
  26. Nomiyama Y, Tashiro M, Yamaguchi T, Watanabe S, Taguchi M, Asaumi H, Nakamura H, Otsuki M (2007) High glucose activates rat pancreatic stellate cells through protein kinase C and p38 mitogen-activated protein kinase pathway. Pancreas 34(3):364–372CrossRefPubMedGoogle Scholar
  27. Ou D, Metzger DL, Wang X, Huang J, Pozzilli P, Tingle AJ (2002) TNF-related apoptosis-inducing ligand death pathway-mediated human beta-cell destruction. Diabetologia 45(12):1678–1688CrossRefPubMedGoogle Scholar
  28. Ou D, Wang X, Metzger DL, Robbins M, Huang J, Jobin C, Chantler JK, James RF, Pozzilli P, Tingle AJ (2005) Regulation of TNF-related apoptosis-inducing ligand-mediated death-signal pathway in human beta cells by Fas-associated death domain and nuclear factor kappa B. Hum Immunol 66(7):799–809CrossRefPubMedGoogle Scholar
  29. Phillips PA, McCarroll JA, Park S, Wu MJ, Pirola R, Korsten M, Wilson JS, Apte MV (2003) Rat pancreatic stellate cells secrete matrix metalloproteinases: implications for extracellular matrix turnover. Gut 52(2):275–282PubMedCentralCrossRefPubMedGoogle Scholar
  30. Saito R, Yamada S, Yamamoto Y, Kodera T, Hara A, Tanaka Y, Kimura F, Takei I, Umezawa K, Kojima I (2012) Conophylline suppresses pancreatic stellate cells and improves islet fibrosis in Goto-Kakizaki rats. Endocrinology 153(2):621–630CrossRefPubMedGoogle Scholar
  31. Schneider E, Schmid-Kotsas A, Zhao J, Weidenbach H, Schmid RM, Menke A, Adler G, Waltenberger J, Grunert A, Bachem MG (2001) Identification of mediators stimulating proliferation and matrix synthesis of rat pancreatic stellate cells. Am J Physiol Cell Physiol 281(2):C532–C543PubMedGoogle Scholar
  32. Schneiderhan W, Diaz F, Fundel M, Zhou S, Siech M, Hasel C, Moller P, Gschwend JE, Seufferlein T, Gress T, Adler G, Bachem MG (2007) Pancreatic stellate cells are an important source of MMP-2 in human pancreatic cancer and accelerate tumor progression in a murine xenograft model and CAM assay. J Cell Sci 120(Pt 3):512–519PubMedGoogle Scholar
  33. Springman EB, Angleton EL, Birkedal-Hansen H, Van Wart HE (1990) Multiple modes of activation of latent human fibroblast collagenase: evidence for the role of a Cys73 active-site zinc complex in latency and a “cysteine switch” mechanism for activation. Proc Natl Acad Sci USA 87(1):364–368PubMedCentralCrossRefPubMedGoogle Scholar
  34. Stephens LA, Thomas HE, Ming L, Grell M, Darwiche R, Volodin L, Kay TW (1999) Tumor necrosis factor-alpha-activated cell death pathways in NIT-1 insulinoma cells and primary pancreatic beta cells. Endocrinology 140(7):3219–3227PubMedGoogle Scholar
  35. Tikellis C, Wookey PJ, Candido R, Andrikopoulos S, Thomas MC, Cooper ME (2004) Improved islet morphology after blockade of the renin- angiotensin system in the ZDF rat. Diabetes 53(4):989–997CrossRefPubMedGoogle Scholar
  36. Wallach D, Boldin M, Goncharov T, Goltsev Y, Mett I, Malinin N, Adar R, Kovalenko A, Varfolomeev E (1996) Exploring cell death mechanisms by analyzing signaling cascades of the TNF/NGF receptor family. Behring Inst Mitt 97:144–155PubMedGoogle Scholar
  37. Woessner JF Jr (1991) Matrix metalloproteinases and their inhibitors in connective tissue remodeling. FASEB J 5(8):2145–2154PubMedGoogle Scholar
  38. Yu Y, Arora A, Min W, Roifman CM, Grunebaum E (2009) EdU incorporation is an alternative non-radioactive assay to [(3)H]thymidine uptake for in vitro measurement of mice T-cell proliferations. J Immunol Methods 350(1–2):29–35CrossRefPubMedGoogle Scholar
  39. Zhang S, Liu H, Yu H, Cooper GJ (2008) Fas-associated death receptor signaling evoked by human amylin in islet beta-cells. Diabetes 57(2):348–356CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Fengfei Li
    • 1
  • Bijun Chen
    • 1
  • Ling Li
    • 1
  • Min Zha
    • 1
  • S. Zhou
    • 2
  • Tongzhi Wu
    • 1
  • M. G. Bachem
    • 2
  • Zilin Sun
    • 1
    Email author
  1. 1.Department of Endocrinology, Institute of Diabetes, Zhongda Hospital, Medical SchoolSoutheast UniversityNanjingChina
  2. 2.Department of Clinical ChemistryUniversity Hospital UlmUlmGermany

Personalised recommendations