Journal of Molecular Histology

, Volume 43, Issue 6, pp 723–735 | Cite as

Comparative study of three angiotensin II type 1 receptor antagonists in preventing liver fibrosis in diabetic rats: stereology, histopathology, and electron microscopy

  • Sare Sipal
  • Zekai HaliciEmail author
  • İlhami Kiki
  • Beyzagul Polat
  • Abdulmecit Albayrak
  • Fatih Albayrak
  • Emre Karakus
  • Selina Aksak
  • Berna Ozturk
  • Cemal Gundogdu
Original Paper


The presence of liver disease in patients with progressively worsening insulin resistance may not be recognized until patients develop manifestations of the metabolic syndrome such as diabetes, hypertension, hyperlipidemia, and vascular disease. It was aimed to investigate whether three angiotensin II type 1 receptor antagonists (ARBs) (olmesartan, losartan, and valsartan) had preventive effect against hepatic fibrosis and this was a common characteristic among ARBs. In current study, 25 adult male rats were used and divided into five groups: the non-diabetic healthy group, alloxan induced diabetic (AID) control group, AID losartan group, AID valsartan group and AID olmesartan group. According to numerical density of hepatocytes, significant difference was found between the non-diabetic healthy group and diabetic control group. All treatments groups were significant when compared to diabetic control group. In diabetic control group it was examined swelling, irregular cristae arrangement in some of mitochondria. It was also determined mitochondria membrane degeneration in some areas of section profiles. In diabetic rats treated with losartan group, there were necrotic hepatocytes. In diabetic rats treated with valsartan group, predominantly, findings were similar to losartan group. In diabetic rats treated with olmesertan group, plates of hepatocytes were quite regular. There were hardly necrotic cells. Not only other organelles such as RER, SER and lysosom but also mitochondrial structures had normal appearance. In the diabetic control group electron microscopy revealed edema in both the cytoplasm and perinuclear area and the nuclear membranes appeared damaged. In conclusion, it was established that the most protective ARB the liver in diabetic rats was olmesartan, followed by losartan.


Hepatic fibrosis Olmesartan Losartan Valsartan Stereology Diabetes Electron microscopy 


Conflict of interest

None of the authors has a commercial interest, financial interest, and/or other relationship with manufacturers of pharmaceuticals, laboratory supplies, and/or medical devices or with commercial providers of medically related services.


  1. Altunkaynak BZ, Unal D, Altunkaynak ME, Halici Z, Kalkan Y, Keles ON, Aksak S, Selli J, Unal B (2012) Effects of diabetes and ovariectomy on rat hippocampus (a biochemical and stereological study). Gynecol Endocrinol 28(3):228–233. doi: 10.3109/09513590.2011.593662 PubMedCrossRefGoogle Scholar
  2. Baddeley AJ, Gundersen HJ, Cruz-Orive LM (1986) Estimation of surface area from vertical sections. J Microsc 142(Pt 3):259–276PubMedCrossRefGoogle Scholar
  3. Bataller R, Schwabe RF, Choi YH, Yang L, Paik YH, Lindquist J, Qian T, Schoonhoven R, Hagedorn CH, Lemasters JJ, Brenner DA (2003) NADPH oxidase signal transduces angiotensin II in hepatic stellate cells and is critical in hepatic fibrosis. J Clin Invest 112(9):1383–1394PubMedGoogle Scholar
  4. Bataller R, Gabele E, Parsons CJ, Morris T, Yang L, Schoonhoven R, Brenner DA, Rippe RA (2005) Systemic infusion of angiotensin II exacerbates liver fibrosis in bile duct-ligated rats. Hepatology 41(5):1046–1055. doi: 10.1002/hep.20665 PubMedCrossRefGoogle Scholar
  5. Brilla CG (2000) Renin-angiotensin-aldosterone system and myocardial fibrosis. Cardiovasc Res 47(1):1–3PubMedCrossRefGoogle Scholar
  6. Carey RM, Siragy HM (2003) Newly recognized components of the renin-angiotensin system: potential roles in cardiovascular and renal regulation. Endocr Rev 24(3):261–271PubMedCrossRefGoogle Scholar
  7. de Oliveira CAM, Luciano E, Marcondes MCCG, de Mello MAR (2007) Effects of swimming training at the intensity equivalent to aerobic/anaerobic metabolic transition in alloxan diabetic rats. J Diabetes Complicat 21(4):258–264PubMedCrossRefGoogle Scholar
  8. Dorph-Petersen KA, Pierri JN, Sun Z, Sampson AR, Lewis DA (2004) Stereological analysis of the mediodorsal thalamic nucleus in schizophrenia: volume, neuron number, and cell types. J Comp Neurol 472(4):449–462. doi: 10.1002/cne.20055 PubMedCrossRefGoogle Scholar
  9. Erbe DV, Gartrell K, Zhang YL, Suri V, Kirincich SJ, Will S, Perreault M, Wang S, Tobin JF (2006) Molecular activation of PPARgamma by angiotensin II type 1-receptor antagonists. Vascul Pharmacol 45(3):154–162. doi: 10.1016/j.vph.2006.05.002 PubMedCrossRefGoogle Scholar
  10. Garcia-Pagan JC, Bosch J, Rodes J (1995) The role of vasoactive mediators in portal hypertension. Semin Gastrointest Dis 6(3):140–147PubMedGoogle Scholar
  11. Grundy SM, Cleeman JI, Daniels SR, Donato KA, Eckel RH, Franklin BA, Gordon DJ, Krauss RM, Savage PJ, Smith SC, Spertus JA, Costa F (2005) Diagnosis and management of the metabolic syndrome: an American Heart Association/National Heart, Lung, and Blood Institute Scientific Statement. Circulation 112(17):2735–2752PubMedCrossRefGoogle Scholar
  12. Gundersen HJ, Jensen EB, Kieu K, Nielsen J (1999) The efficiency of systematic sampling in stereology–reconsidered. J Microsc 193(Pt 3):199–211PubMedCrossRefGoogle Scholar
  13. Halici Z, Bilen H, Albayrak F, Uyanik A, Cetinkaya R, Suleyman H, Keles ON, Unal B (2009) Does telmisartan prevent hepatic fibrosis in rats with alloxan-induced diabetes? Eur J Pharmacol 614(1–3):146–152. doi: 10.1016/j.ejphar.2009.04.042 PubMedCrossRefGoogle Scholar
  14. Hirose A, Ono M, Saibara T, Nozaki Y, Masuda K, Yoshioka A, Takahashi M, Akisawa N, Iwasaki S, Oben JA, Onishi S (2007) Angiotensin II type 1 receptor blocker inhibits fibrosis in rat nonalcoholic steatohepatitis. Hepatology 45(6):1375–1381. doi: 10.1002/hep.21638 PubMedCrossRefGoogle Scholar
  15. Howard CV, Reed MG (1998) Unbiased stereology. Three dimensional measurement in microscopy. Bios Scientific Publishers, OxfordGoogle Scholar
  16. Jin H, Yamamoto N, Uchida K, Terai S, Sakaida I (2007) Telmisartan prevents hepatic fibrosis and enzyme-altered lesions in liver cirrhosis rat induced by a choline-deficient L-amino acid-defined diet. Biochem Biophys Res Commun 364(4):801–807. doi: 10.1016/j.bbrc.2007.10.083 PubMedCrossRefGoogle Scholar
  17. Kanno K, Tazuma S, Nishioka T, Hyogo H, Chayama K (2005) Angiotensin II participates in hepatic inflammation and fibrosis through MCP-1 expression. Digest Dis Sci 50(5):942–948PubMedCrossRefGoogle Scholar
  18. Kaplan S, Canan S, Aslan H, Unal B, Sahin B (2001) A simple technique to measure the movements of the microscope stage along the x and y axes for stereological methods. J Microsc 203(Pt 3):321–325PubMedCrossRefGoogle Scholar
  19. Kim MY, Baik SK, Park DH, Jang YO, Suk KT, Yea CJ, Lee IY, Kim JW, Kim HS, Kwon SO, Cho MY, Ko SB, Chang SJ, Um SH, Han KH (2008) Angiotensin receptor blockers are superior to angiotensin-converting enzyme inhibitors in the suppression of hepatic fibrosis in a bile duct-ligated rat model. J Gastroenterol 43(11):889–896. doi: 10.1007/s00535-008-2239-9 PubMedCrossRefGoogle Scholar
  20. Kitamura K, Tada S, Nakamoto N, Toda K, Horikawa H, Kurita S, Tsunematsu S, Kumagai N, Ishii H, Saito H, Hibi T (2007) Rho/Rho kinase is a key enzyme system involved in the angiotensin II signaling pathway of liver fibrosis and steatosis. J Gastroenterol Hepatol 22(11):2022–2033. doi: 10.1111/j.1440-1746.2006.04735.x PubMedCrossRefGoogle Scholar
  21. Klover PJ, Mooney RA (2004) Hepatocytes: critical for glucose homeostasis. Int J Biochem Cell Biol 36(5):753–758PubMedCrossRefGoogle Scholar
  22. Kurikawa N, Suga M, Kuroda S, Yamada K, Ishikawa H (2003) An angiotensin II type 1 receptor antagonist, olmesartan medoxomil, improves experimental liver fibrosis by suppression of proliferation and collagen synthesis in activated hepatic stellate cells. Br J Pharmacol 139(6):1085–1094. doi: 10.1038/sj.bjp.0705339 PubMedCrossRefGoogle Scholar
  23. Lee MH, Song HK, Ko GJ, Kang YS, Han SY, Han KH, Kim HK, Han JY, Cha DR (2008) Angiotensin receptor blockers improve insulin resistance in type 2 diabetic rats by modulating adipose tissue. Kidney Int 74(7):890–900. doi: 10.1038/ki.2008.313 PubMedCrossRefGoogle Scholar
  24. Liu Z (2007) The renin-angiotensin system and insulin resistance. Curr Diab Rep 7(1):34–42PubMedCrossRefGoogle Scholar
  25. Mattfeldt T, Mall G, Gharehbaghi H, Moller P (1990) Estimation of surface area and length with the orientator. J Microsc 159(Pt 3):301–317PubMedCrossRefGoogle Scholar
  26. Nabeshima Y, Tazuma S, Kanno K, Hyogo H, Chayama K (2009) Deletion of angiotensin II type I receptor reduces hepatic steatosis. J Hepatol 50(6):1226–1235. doi: 10.1016/j.jhep.2009.01.018 PubMedCrossRefGoogle Scholar
  27. Nyengaard JR, Gundersen HJG (1992) The Isector - a Simple and Direct Method for Generating Isotropic, Uniform Random Sections from Small Specimens. J Microsc-Oxford 165:427–431CrossRefGoogle Scholar
  28. Paizis G, Gilbert RE, Cooper ME, Murthi P, Schembri JM, Wu LL, Rumble JR, Kelly DJ, Tikellis C, Cox A, Smallwood RA, Angus PW (2001) Effect of angiotensin II type 1 receptor blockade on experimental hepatic fibrogenesis. J Hepatol 35(3):376–385PubMedCrossRefGoogle Scholar
  29. Rao BK, Kesavulu MM, Giri R, Appa Rao C (1999) Antidiabetic and hypolipidemic effects of Momordica cymbalaria Hook. fruit powder in alloxan-diabetic rats. J Ethnopharmacol 67(1):103–109PubMedCrossRefGoogle Scholar
  30. Sanchez SS, Abregu AV, Aybar MJ, Sanchez Riera AN (2000) Changes in liver gangliosides in streptozotocin-induced diabetic rats. Cell Biol Int 24(12):897–904. doi: 10.1006/cbir.1999.0452 PubMedCrossRefGoogle Scholar
  31. Scheen AJ (2004) Renin-angiotensin system inhibition prevents type 2 diabetes mellitus. Part 1. A meta-analysis of randomised clinical trials. Diabetes Metab 30(6):487–496PubMedCrossRefGoogle Scholar
  32. Steckelings UM, Rompe F, Kaschina E, Unger T (2009) The evolving story of the RAAS in hypertension, diabetes and CV disease: moving from macrovascular to microvascular targets. Fundam Clin Pharmacol 23(6):693–703. doi: 10.1111/j.1472-8206.2009.00780.x PubMedCrossRefGoogle Scholar
  33. Sun Y, Zhang J, Zhang JQ, Ramires FJ (2000) Local angiotensin II and transforming growth factor-beta1 in renal fibrosis of rats. Hypertension 35(5):1078–1084PubMedCrossRefGoogle Scholar
  34. Svegliati-Baroni G, Saccomanno S, van Goor H, Jansen P, Benedetti A, Moshage H (2001) Involvement of reactive oxygen species and nitric oxide radicals in activation and proliferation of rat hepatic stellate cells. Liver 21(1):1–12PubMedCrossRefGoogle Scholar
  35. Takahashi T, Ono H, Ono Y, Ishimitsu T, Matsuoka H (2007) Combination therapy with telmisartan and spironolactone alleviates L-NAME exacerbated nephrosclerosis with an increase in PPAR-gamma and decrease in TGF-beta(1). Int Heart J 48(5):637–647PubMedCrossRefGoogle Scholar
  36. Tuncer I, Ozbek H, Ugras S, Bayram I (2003) Anti-fibrogenic effects of captopril and candesartan cilexetil on the hepatic fibrosis development in rat. The effect of AT1-R blocker on the hepatic fibrosis. Exp Toxicol Pathol 55(2–3):159–166PubMedGoogle Scholar
  37. Ueki M, Koda M, Yamamoto S, Matsunaga Y, Murawaki Y (2006) Preventive and therapeutic effects of angiotensin II type 1 receptor blocker on hepatic fibrosis induced by bile duct ligation in rats. J Gastroenterol 41(10):996–1004. doi: 10.1007/s00535-006-1891-1 PubMedCrossRefGoogle Scholar
  38. UK Prospective Diabetes Study (UKPDS) Group (1998) Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). Lancet 352(9131):837–853CrossRefGoogle Scholar
  39. Unal D, Aksak S, Halici Z, Sengul O, Polat B, Unal B, Halici M (2011) Effects of diabetes mellitus on the rat liver during the postmenopausal period. J Mol Histol 42(3):273–287. doi: 10.1007/s10735-011-9331-9 PubMedCrossRefGoogle Scholar
  40. Uyanik A, Unal D, Uyanik MH, Halici Z, Odabasoglu F, Altunkaynak ZB, Cadirci E, Keles M, Gundogdu C, Suleyman H, Bayir Y, Albayrak M, Unal B (2010) The effects of polymicrobial sepsis with diabetes mellitus on kidney tissues in ovariectomized rats. Ren Fail 32(5):592–602. doi: 10.3109/08860221003759478 PubMedCrossRefGoogle Scholar
  41. Wei HS, Li DG, Lu HM, Zhan YT, Wang ZR, Huang X, Zhang J, Cheng JL, Xu QF (2000) Effects of AT1 receptor antagonist, losartan, on rat hepatic fibrosis induced by CCl(4). World J Gastroenterol 6(4):540–545PubMedGoogle Scholar
  42. Wei YH, Jun L, Qiang CJ (2004) Effect of losartan, an angiotensin II antagonist, on hepatic fibrosis induced by CCl4 in rats. Dig Dis Sci 49(10):1589–1594PubMedCrossRefGoogle Scholar
  43. Xu W, Song S, Huang Y, Gong Z (2006) Effects of perindopril and valsartan on expression of transforming growth factor-beta-Smads in experimental hepatic fibrosis in rats. J Gastroenterol Hepatol 21(8):1250–1256. doi: 10.1111/j.1440-1746.2006.04331.x PubMedCrossRefGoogle Scholar
  44. Yang S, Lin HZ, Hwang J, Chacko VP, Diehl AM (2001) Hepatic hyperplasia in noncirrhotic fatty livers: is obesity-related hepatic steatosis a premalignant condition? Cancer Res 61(13):5016–5023PubMedGoogle Scholar
  45. Yoshiji H, Kuriyama S, Yoshii J, Ikenaka Y, Noguchi R, Nakatani T, Tsujinoue H, Fukui H (2001) Angiotensin-II type 1 receptor interaction is a major regulator for liver fibrosis development in rats. Hepatology 34(4 Pt 1):745–750. doi: 10.1053/jhep.2001.28231 PubMedCrossRefGoogle Scholar
  46. Yoshiji H, Noguchi R, Ikenaka Y, Namisaki T, Kitade M, Kaji K, Shirai Y, Yoshii J, Yanase K, Yamazaki M, Tsujimoto T, Kawaratani H, Akahane T, Aihara Y, Fukui H (2009) Losartan, an angiotensin-II type 1 receptor blocker, attenuates the liver fibrosis development of non-alcoholic steatohepatitis in the rat. BMC Res Notes 2:70. doi: 10.1186/1756-0500-2-70 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Sare Sipal
    • 1
  • Zekai Halici
    • 2
    Email author
  • İlhami Kiki
    • 3
  • Beyzagul Polat
    • 2
  • Abdulmecit Albayrak
    • 2
  • Fatih Albayrak
    • 4
  • Emre Karakus
    • 2
  • Selina Aksak
    • 5
  • Berna Ozturk
    • 2
  • Cemal Gundogdu
    • 1
  1. 1.Department of Pathology, Faculty of MedicineAtaturk UniversityErzurumTurkey
  2. 2.Department of Pharmacology, Faculty of MedicineAtaturk UniversityErzurumTurkey
  3. 3.Department of Internal Medicine, Division of Hematology, Faculty of MedicineAtaturk UniversityErzurumTurkey
  4. 4.Department of Internal Medicine, Division of Gastroenterelogy, Faculty of MedicineAtaturk UniversityErzurumTurkey
  5. 5.Department of Histology and Embryology, Faculty of MedicineAtaturk UniversityErzurumTurkey

Personalised recommendations