Journal of Molecular Histology

, Volume 43, Issue 4, pp 437–447 | Cite as

Interactions of neurons with topographic nano cues affect branching morphology mimicking neuron–neuron interactions

  • Koby Baranes
  • Davida Kollmar
  • Nathan Chejanovsky
  • Amos Sharoni
  • Orit Shefi
Original Paper


We study the effect of topographic nano-cues on neuronal growth-morphology using invertebrate neurons in culture. We use photolithography to fabricate substrates with repeatable line-pattern ridges of nano-scale heights of 10–150 nm. We plate leech neurons atop the patterned-substrates and compare their growth pattern to neurons plated atop non-patterned substrates. The model system allows us the analysis of single neurite–single ridge interactions. The use of high resolution electron microscopy reveals small filopodia processes that attach to the line-pattern ridges. These fine processes, that cannot be detected in light microscopy, add anchoring sites onto the side of the ridges, thus additional physical support. These interactions of the neuronal process dominantly affect the neuronal growth direction. We analyze the response of the entire neuronal branching tree to the patterned substrates and find significant effect on the growth patterns compared to non-patterned substrates. Moreover, interactions with the nano-cues trigger a growth strategy similarly to interactions with other neuronal cells, as reflected in their morphometric parameters. The number of branches and the number of neurites originating from the soma decrease following the interaction demonstrating a tendency to a more simplified neuronal branching tree. The effect of the nano-cues on the neuronal function deserves further investigation and will strengthen our understanding of the interplay between function and form.


Leech Culture Nano-scale cues Topography Lithography Neuronal network Morphometrics analysis Neuron–neuron interaction 



The authors acknowledge the EU-FP7 People IRG Grants 239482 (O.S.) and 268357 (A.S.). We thank Dr. Yossi Talyosef for technical assistance with the HR-SEM images.


  1. Anava S, Greenbaum A, Ben Jacob E, Hanein Y, Ayali A (2009) The regulative role of neurite mechanical tension in network development. Biophys J 96:1661–1670PubMedCrossRefGoogle Scholar
  2. Arnold M, Cavalcanti-Adam EA, Glass R, Blummel J, Eck W, Kantlehner M, Kessler H, Spatz JP (2004) Activation of integrin function by nanopatterned adhesive interfaces. Chem Phys Chem 5:383–388PubMedCrossRefGoogle Scholar
  3. Baranes K, Chejanovsky N, Alon N, Sharoni A, Shefi O (2012) Topographic cues of nano-scale height direct neuronal growth pattern. Biotechnol Bioeng. doi: 10.1002/bit.24444 PubMedGoogle Scholar
  4. Britland S, Perridge C, Denyer M, Morgan H, Curtis A, Wilkinson C (1996) Morphogenetic guidance cues can interact synergistically and hierarchically in steering nerve cell growth. Exp Biol Online 1:1–11Google Scholar
  5. Clark P, Connolly P, Curtis ASG, Dow JAT, Wilkinson CDW (1990) Topographical control of cell behaviour: II. Multiple grooved substrata. Development 108:635–644PubMedGoogle Scholar
  6. Curtis A, Wilkinson C (1997) Topographical control of cells. Biomaterials 18:1573–1583PubMedCrossRefGoogle Scholar
  7. den Braber ET, de Ruijter JE, Ginsel LA, von Recum AF, Jansen JA (1998) Orientation of ECM protein deposition, fibroblast cytoskeleton, and attachment complex components on silicone microgrooved surfaces. J Biomed Mater Res 40:291–300CrossRefGoogle Scholar
  8. Dos Reis G, Fenili F, Gianfelice A, Bongiorno G, Marchesi D, Scopelliti PE, Borgonovo A, Podesta A, Indrieri M, Ranucci E, Ferruti P, Lenardi C, Milani P (2010) Direct microfabrication of topographical and chemical cues for the guided growth of neural cell networks on polyamidoamine hydrogels. Macromol Biosci 10:842–852PubMedCrossRefGoogle Scholar
  9. Fozdar DY, Lee JY, Schmidt CE, Chen S (2010) Hippocampal neurons respond uniquely to topographies of various sizes and shapes. Biofabrication 2:035005PubMedCrossRefGoogle Scholar
  10. Fricke R, Zentis PD, Rajappa LT, Hofmann B, Banzet M, Offenhausser A, Meffert SH (2011) Axon guidance of rat cortical neurons by microcontact printed gradients. Biomaterials 32:2070–2076PubMedCrossRefGoogle Scholar
  11. Hallstrom W, Martensson T, Prinz C, Gustavsson P, Montelius L, Samuelson L, Kanje M (2007) Gallium phosphide nanowires as a substrate for cultured neurons. Nano Lett 7:2960–2965PubMedCrossRefGoogle Scholar
  12. Hanson JN, Motala MJ, Heien ML, Gillette M, Sweedler J, Nuzzo RG (2009) Textural guidance cues for controlling process outgrowth of mammalian neurons. Lab Chip 9:122–131PubMedCrossRefGoogle Scholar
  13. Huber AB, Kolodkin AL, Ginty DD, Cloutier JF (2003) Signaling at the growth cone: ligand-receptor complexes and the control of axon growth and guidance. Annu Rev Neurosci 26:509–563PubMedCrossRefGoogle Scholar
  14. Hwang H, Kang G, Yeon JH, Nam Y, Park JK (2009) Direct rapid prototyping of PDMS from a photomask film for micropatterning of biomolecules and cells. Lab Chip 9:167–170PubMedCrossRefGoogle Scholar
  15. Johansson F, Carlberg P, Danielsen N, Montelius L, Kanje M (2006) Axonal outgrowth on nano-imprinted patterns. Biomaterials 27:1251–1258PubMedCrossRefGoogle Scholar
  16. Kim DH, Lipke EA, Kim P, Cheong R, Thompson S, Delannoy M, Suh KY, Tung L, Levchenko A (2010) Nanoscale cues regulate the structure and function of macroscopic cardiac tissue constructs. Proc Natl Acad Sci USA 107:565–570PubMedCrossRefGoogle Scholar
  17. Lee JW, Lee KS, Cho N, Ju BK, Lee KB, Lee SH (2007) Topographical guidance of mouse neuronal cell on SiO2 microtracks. Sens Actuators B Chem 128:252–257CrossRefGoogle Scholar
  18. Mahoney MJ, Chen RR, Tan J, Saltzman WM (2005) The influence of microchannels on neurite growth and architecture. Biomaterials 26:771–778PubMedCrossRefGoogle Scholar
  19. Meijering E, Jacob M, Sarria JC, Steiner P, Hirling H, Unser M (2004) Design and validation of a tool for neurite tracing and analysis in fluorescence microscopy images. Cytometry 58:167–176PubMedCrossRefGoogle Scholar
  20. Prinz C, Hallstrom W, Martensson T, Samuelson L, Montelius L, Kanje M (2008) Axonal guidance on patterned free-standing nanowire surfaces. Nanotechnology 19:345101-1-345101-6Google Scholar
  21. Rico B, Beggs HE, Schahin-Reed D, Kimes N, Schmidt A, Reichardt LF (2004) Control of axonal branching and synapse formation by focal adhesion kinase. Nat Neurosci 7:1059–1069PubMedCrossRefGoogle Scholar
  22. Shefi O, Ben-Jacob E, Ayali A (2002a) Growth morphology of two-dimensional insect neural networks. Neurocomputing 44–46:635–643CrossRefGoogle Scholar
  23. Shefi O, Golding I, Segev R, Ben-Jacob E, Ayali A (2002b) Morphological characterization of in vitro neuronal networks. Phys Rev E 66:021905CrossRefGoogle Scholar
  24. Shefi O, Harel A, Chklovskii DB, Ben-Jacob E, Ayali A (2004) Biophysical constraints on neuronal branching. Neurocomputing 58–60:487–495CrossRefGoogle Scholar
  25. Shefi O, Golebowicz S, Ben-Jacob E, Ayali A (2005) A two-phase growth strategy in cultured neuronal networks as reflected by the distribution of neurite branching angles. J Neurobiol 62:361–368PubMedCrossRefGoogle Scholar
  26. Suter DM, Forscher P (2000) Substrate-cytoskeletal coupling as a mechanism for the regulation of growth cone motility and guidance. J Neurobiol 44:97–113PubMedCrossRefGoogle Scholar
  27. Tessier-Lavigne M, Goodman CS (1996) The molecular biology of axon guidance. Science 274:1123–1133PubMedCrossRefGoogle Scholar
  28. Trueta C, Mendez B, De-Miguel FF (2003) Somatic exocytosis of serotonin mediated by L-type calcium channels in cultured leech neurones. J Physiol 547:405–416PubMedCrossRefGoogle Scholar
  29. Verstreken P, Ohyama T, Bellen HJ (2008) FM 1-43 labeling of synaptic vesicle pools at the Drosophila neuromuscular junction. Methods Mol Biol 440:349–369PubMedCrossRefGoogle Scholar
  30. Whitington PM (1993) Axon guidance factors in invertebrate development. Pharmacol Ther 58:263–299PubMedCrossRefGoogle Scholar
  31. Xie C, Hanson L, Xie W, Lin Z, Cui B, Cui Y (2010) Noninvasive neuron pinning with nanopillar arrays. Nano Lett 10:4020–4024PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  1. 1.Faculty of EngineeringBar Ilan UniversityRamat GanIsrael
  2. 2.Department of PhysicsBar Ilan UniversityRamat GanIsrael
  3. 3.Bar Ilan Institute of Nanotechnologies and Advanced MaterialsRamat GanIsrael
  4. 4.Stern College for WomenYeshiva UniversityNew YorkUSA

Personalised recommendations