Skip to main content
Log in

Interactions of neurons with topographic nano cues affect branching morphology mimicking neuron–neuron interactions

  • Original Paper
  • Published:
Journal of Molecular Histology Aims and scope Submit manuscript

Abstract

We study the effect of topographic nano-cues on neuronal growth-morphology using invertebrate neurons in culture. We use photolithography to fabricate substrates with repeatable line-pattern ridges of nano-scale heights of 10–150 nm. We plate leech neurons atop the patterned-substrates and compare their growth pattern to neurons plated atop non-patterned substrates. The model system allows us the analysis of single neurite–single ridge interactions. The use of high resolution electron microscopy reveals small filopodia processes that attach to the line-pattern ridges. These fine processes, that cannot be detected in light microscopy, add anchoring sites onto the side of the ridges, thus additional physical support. These interactions of the neuronal process dominantly affect the neuronal growth direction. We analyze the response of the entire neuronal branching tree to the patterned substrates and find significant effect on the growth patterns compared to non-patterned substrates. Moreover, interactions with the nano-cues trigger a growth strategy similarly to interactions with other neuronal cells, as reflected in their morphometric parameters. The number of branches and the number of neurites originating from the soma decrease following the interaction demonstrating a tendency to a more simplified neuronal branching tree. The effect of the nano-cues on the neuronal function deserves further investigation and will strengthen our understanding of the interplay between function and form.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Anava S, Greenbaum A, Ben Jacob E, Hanein Y, Ayali A (2009) The regulative role of neurite mechanical tension in network development. Biophys J 96:1661–1670

    Article  PubMed  CAS  Google Scholar 

  • Arnold M, Cavalcanti-Adam EA, Glass R, Blummel J, Eck W, Kantlehner M, Kessler H, Spatz JP (2004) Activation of integrin function by nanopatterned adhesive interfaces. Chem Phys Chem 5:383–388

    Article  PubMed  CAS  Google Scholar 

  • Baranes K, Chejanovsky N, Alon N, Sharoni A, Shefi O (2012) Topographic cues of nano-scale height direct neuronal growth pattern. Biotechnol Bioeng. doi:10.1002/bit.24444

    PubMed  Google Scholar 

  • Britland S, Perridge C, Denyer M, Morgan H, Curtis A, Wilkinson C (1996) Morphogenetic guidance cues can interact synergistically and hierarchically in steering nerve cell growth. Exp Biol Online 1:1–11

    Google Scholar 

  • Clark P, Connolly P, Curtis ASG, Dow JAT, Wilkinson CDW (1990) Topographical control of cell behaviour: II. Multiple grooved substrata. Development 108:635–644

    PubMed  CAS  Google Scholar 

  • Curtis A, Wilkinson C (1997) Topographical control of cells. Biomaterials 18:1573–1583

    Article  PubMed  CAS  Google Scholar 

  • den Braber ET, de Ruijter JE, Ginsel LA, von Recum AF, Jansen JA (1998) Orientation of ECM protein deposition, fibroblast cytoskeleton, and attachment complex components on silicone microgrooved surfaces. J Biomed Mater Res 40:291–300

    Article  Google Scholar 

  • Dos Reis G, Fenili F, Gianfelice A, Bongiorno G, Marchesi D, Scopelliti PE, Borgonovo A, Podesta A, Indrieri M, Ranucci E, Ferruti P, Lenardi C, Milani P (2010) Direct microfabrication of topographical and chemical cues for the guided growth of neural cell networks on polyamidoamine hydrogels. Macromol Biosci 10:842–852

    Article  PubMed  Google Scholar 

  • Fozdar DY, Lee JY, Schmidt CE, Chen S (2010) Hippocampal neurons respond uniquely to topographies of various sizes and shapes. Biofabrication 2:035005

    Article  PubMed  Google Scholar 

  • Fricke R, Zentis PD, Rajappa LT, Hofmann B, Banzet M, Offenhausser A, Meffert SH (2011) Axon guidance of rat cortical neurons by microcontact printed gradients. Biomaterials 32:2070–2076

    Article  PubMed  CAS  Google Scholar 

  • Hallstrom W, Martensson T, Prinz C, Gustavsson P, Montelius L, Samuelson L, Kanje M (2007) Gallium phosphide nanowires as a substrate for cultured neurons. Nano Lett 7:2960–2965

    Article  PubMed  Google Scholar 

  • Hanson JN, Motala MJ, Heien ML, Gillette M, Sweedler J, Nuzzo RG (2009) Textural guidance cues for controlling process outgrowth of mammalian neurons. Lab Chip 9:122–131

    Article  PubMed  CAS  Google Scholar 

  • Huber AB, Kolodkin AL, Ginty DD, Cloutier JF (2003) Signaling at the growth cone: ligand-receptor complexes and the control of axon growth and guidance. Annu Rev Neurosci 26:509–563

    Article  PubMed  CAS  Google Scholar 

  • Hwang H, Kang G, Yeon JH, Nam Y, Park JK (2009) Direct rapid prototyping of PDMS from a photomask film for micropatterning of biomolecules and cells. Lab Chip 9:167–170

    Article  PubMed  CAS  Google Scholar 

  • Johansson F, Carlberg P, Danielsen N, Montelius L, Kanje M (2006) Axonal outgrowth on nano-imprinted patterns. Biomaterials 27:1251–1258

    Article  PubMed  CAS  Google Scholar 

  • Kim DH, Lipke EA, Kim P, Cheong R, Thompson S, Delannoy M, Suh KY, Tung L, Levchenko A (2010) Nanoscale cues regulate the structure and function of macroscopic cardiac tissue constructs. Proc Natl Acad Sci USA 107:565–570

    Article  PubMed  CAS  Google Scholar 

  • Lee JW, Lee KS, Cho N, Ju BK, Lee KB, Lee SH (2007) Topographical guidance of mouse neuronal cell on SiO2 microtracks. Sens Actuators B Chem 128:252–257

    Article  Google Scholar 

  • Mahoney MJ, Chen RR, Tan J, Saltzman WM (2005) The influence of microchannels on neurite growth and architecture. Biomaterials 26:771–778

    Article  PubMed  CAS  Google Scholar 

  • Meijering E, Jacob M, Sarria JC, Steiner P, Hirling H, Unser M (2004) Design and validation of a tool for neurite tracing and analysis in fluorescence microscopy images. Cytometry 58:167–176

    Article  PubMed  CAS  Google Scholar 

  • Prinz C, Hallstrom W, Martensson T, Samuelson L, Montelius L, Kanje M (2008) Axonal guidance on patterned free-standing nanowire surfaces. Nanotechnology 19:345101-1-345101-6

    Google Scholar 

  • Rico B, Beggs HE, Schahin-Reed D, Kimes N, Schmidt A, Reichardt LF (2004) Control of axonal branching and synapse formation by focal adhesion kinase. Nat Neurosci 7:1059–1069

    Article  PubMed  CAS  Google Scholar 

  • Shefi O, Ben-Jacob E, Ayali A (2002a) Growth morphology of two-dimensional insect neural networks. Neurocomputing 44–46:635–643

    Article  Google Scholar 

  • Shefi O, Golding I, Segev R, Ben-Jacob E, Ayali A (2002b) Morphological characterization of in vitro neuronal networks. Phys Rev E 66:021905

    Article  Google Scholar 

  • Shefi O, Harel A, Chklovskii DB, Ben-Jacob E, Ayali A (2004) Biophysical constraints on neuronal branching. Neurocomputing 58–60:487–495

    Article  Google Scholar 

  • Shefi O, Golebowicz S, Ben-Jacob E, Ayali A (2005) A two-phase growth strategy in cultured neuronal networks as reflected by the distribution of neurite branching angles. J Neurobiol 62:361–368

    Article  PubMed  Google Scholar 

  • Suter DM, Forscher P (2000) Substrate-cytoskeletal coupling as a mechanism for the regulation of growth cone motility and guidance. J Neurobiol 44:97–113

    Article  PubMed  CAS  Google Scholar 

  • Tessier-Lavigne M, Goodman CS (1996) The molecular biology of axon guidance. Science 274:1123–1133

    Article  PubMed  CAS  Google Scholar 

  • Trueta C, Mendez B, De-Miguel FF (2003) Somatic exocytosis of serotonin mediated by L-type calcium channels in cultured leech neurones. J Physiol 547:405–416

    Article  PubMed  CAS  Google Scholar 

  • Verstreken P, Ohyama T, Bellen HJ (2008) FM 1-43 labeling of synaptic vesicle pools at the Drosophila neuromuscular junction. Methods Mol Biol 440:349–369

    Article  PubMed  CAS  Google Scholar 

  • Whitington PM (1993) Axon guidance factors in invertebrate development. Pharmacol Ther 58:263–299

    Article  PubMed  CAS  Google Scholar 

  • Xie C, Hanson L, Xie W, Lin Z, Cui B, Cui Y (2010) Noninvasive neuron pinning with nanopillar arrays. Nano Lett 10:4020–4024

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the EU-FP7 People IRG Grants 239482 (O.S.) and 268357 (A.S.). We thank Dr. Yossi Talyosef for technical assistance with the HR-SEM images.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Amos Sharoni or Orit Shefi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baranes, K., Kollmar, D., Chejanovsky, N. et al. Interactions of neurons with topographic nano cues affect branching morphology mimicking neuron–neuron interactions. J Mol Hist 43, 437–447 (2012). https://doi.org/10.1007/s10735-012-9422-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10735-012-9422-2

Keywords

Navigation