Journal of Molecular Histology

, Volume 43, Issue 1, pp 17–25 | Cite as

Expression of p97/VCP and ubiquitin during postnatal development of the degenerating rat retina

  • Huseyin Ortak
  • Sevil Cayli
  • Ufuk Tas
  • Seda Ocakli
  • Erkan Söğüt
  • Helin Deniz Demir
Original Paper


In this study, we aimed to investigate the distribution pattern of ubiquitin and p97/VCP in the rat retina during postnatal development. Eyeballs from 1-, 4-, 10-, 36- and 72-week-old rats were examined by immunohistochemistry, and protein colocalization was determined by immunofluorescence microscopy. In the 1-week-old rat retina, p97/VCP was strongly expressed in the neuroblast layer, however no ubiquitin immunoreactivity was observed. p97/VCP immunoreactivity was present in the ganglion cell layer (GCL), inner nuclear layer (INL), outer nuclear layer (ONL), inner segment (IS) of the photoreceptor layer, and retinal pigment epithelium in the 4- and 10-week-old rat retinas. p97/VCP immunoreactivity increased significantly in the 10-week-old rat retinas. Ubiquitin was barely seen in the 4-week-old rat retinas, and ubiquitin expression was weak in the GCL and the IPL of the 10-week-old rat retinas. In the 36- and 72-week-old rats, the presence of ubiquitin was remarkable in the IS, INL, IPL and GCL, however, p97/VCP immunoreactivity was significantly decreased. Colocalization of ubiquitin and p97/VCP was also observed in the INL, IS, GCL and ONL of 36- and 72-week-old rat retinas. Our results indicate that p97/VCP immunoreactivity in the retina significantly decreases after rats reach 10 weeks of age, whereas ubiquitin immunoreactivity increases with aging. These results suggest that an altered expression pattern of p97/VCP and ubiquitin in the developing rat retina may associate with age-related retinal degeneration.


Ubiquitin p97/VCP Rat Retinal degeneration 



This project was supported by the Research Foundation of Gaziosmanpasa University (Project no:2011-059).


  1. Cayli S, Eyibilen A, Gurbuzler L, Koc S, Atay GA, Ekici A, Aladag I (2011) Jab1 expression is associated with TGF-beta1 signaling in chronic rhinosinusitis and nasal polyposis. Acta Histochem. doi: 10.1016/j.acthis.2011.01.005
  2. Ciechanover A (2007) Intracellular protein degradation from a vague idea through the lysosome and the ubiquitin-proteasome system and on to human diseases and drug targeting: Nobel Lecture, December 8, 2004. Ann N Y Acad Sci 1116:1–28. doi: 10.1196/annals.1402.078 PubMedCrossRefGoogle Scholar
  3. Curcio CA, Millican CL, Allen KA, Kalina RE (1993) Aging of the human photoreceptor mosaic: evidence for selective vulnerability of rods in central retina. Invest Ophthalmol Vis Sci 34(12):3278–3296PubMedGoogle Scholar
  4. Dai RM, Li CC (2001) Valosin-containing protein is a multi-ubiquitin chain-targeting factor required in ubiquitin-proteasome degradation. Nat Cell Biol 3(8):740–744. doi: 10.1038/3508705635087056 PubMedCrossRefGoogle Scholar
  5. Feeney-Burns L, Hilderbrand ES, Eldridge S (1984) Aging human RPE: morphometric analysis of macular, equatorial, and peripheral cells. Invest Ophthalmol Vis Sci 25(2):195–200PubMedGoogle Scholar
  6. Ficarro S, Chertihin O, Westbrook VA, White F, Jayes F, Kalab P, Marto JA, Shabanowitz J, Herr JC, Hunt DF, Visconti PE (2003) Phosphoproteome analysis of capacitated human sperm. Evidence of tyrosine phosphorylation of a kinase-anchoring protein 3 and valosin-containing protein/p97 during capacitation. J Biol Chem 278(13):11579–11589. doi: 10.1074/jbc.M202325200 PubMedCrossRefGoogle Scholar
  7. Finnegan S, Robson J, Hocking PM, Ali M, Inglehearn CF, Stitt A, Curry WJ (2010) Proteomic profiling of the retinal dysplasia and degeneration chick retina. Mol Vis 16:7–17PubMedGoogle Scholar
  8. Fletcher EL, Kalloniatis M (1997) Localisation of amino acid neurotransmitters during postnatal development of the rat retina. J Comp Neurol 380(4):449–471. doi: 10.1002/(SICI)1096-9861(19970421)380:4<449:AID-CNE3>3.0.CO;2-1 PubMedCrossRefGoogle Scholar
  9. Gao H, Hollyfield JG (1992) Aging of the human retina. Differential loss of neurons and retinal pigment epithelial cells. Invest Ophthalmol Vis Sci 33(1):1–17PubMedGoogle Scholar
  10. Griciuc A, Aron L, Piccoli G, Ueffing M (2011a) Clearance of Rhodopsin(P23H) aggregates requires the ERAD effector VCP. Biochim Biophys Acta 1803(3):424–434. doi: 10.1016/j.bbamcr.2010.01.008 CrossRefGoogle Scholar
  11. Griciuc A, Aron L, Roux MJ, Klein R, Giangrande A, Ueffing M (2011b) Inactivation of VCP/ter94 suppresses retinal pathology caused by misfolded rhodopsin in Drosophila. PLoS Genet 6(8). doi: 10.1371/journal.pgen.1001075
  12. Grillari J, Katinger H, Voglauer R (2006) Aging and the ubiquitinome: traditional and non-traditional functions of ubiquitin in aging cells and tissues. Exp Gerontol 41(11):1067–1079. doi: 10.1016/j.exger.2006.07.003 PubMedCrossRefGoogle Scholar
  13. Grunwald JE, Metelitsina TI, Dupont JC, Ying GS, Maguire MG (2005) Reduced foveolar choroidal blood flow in eyes with increasing AMD severity. Invest Ophthalmol Vis Sci 46(3):1033–1038. doi: 10.1167/iovs.04-1050 PubMedCrossRefGoogle Scholar
  14. Harding JJ (2002) Viewing molecular mechanisms of ageing through a lens. Ageing Res Rev 1(3):465–479PubMedCrossRefGoogle Scholar
  15. Hetzer M, Meyer HH, Walther TC, Bilbao-Cortes D, Warren G, Mattaj IW (2001) Distinct AAA-ATPase p97 complexes function in discrete steps of nuclear assembly. Nat Cell Biol 3(12):1086–1091PubMedCrossRefGoogle Scholar
  16. Hirabayashi M, Inoue K, Tanaka K, Nakadate K, Ohsawa Y, Kamei Y, Popiel AH, Sinohara A, Iwamatsu A, Kimura Y, Uchiyama Y, Hori S, Kakizuka A (2001) VCP/p97 in abnormal protein aggregates, cytoplasmic vacuoles, and cell death, phenotypes relevant to neurodegeneration. Cell Death Differ 8(10):977–984. doi: 10.1038/sj.cdd.4400907 PubMedCrossRefGoogle Scholar
  17. Hochstrasser M (1995) Ubiquitin, proteasomes, and the regulation of intracellular protein degradation. Curr Opin Cell Biol 7(2):215–223PubMedCrossRefGoogle Scholar
  18. Kobayashi T, Manno A, Kakizuka A (2007) Involvement of valosin-containing protein (VCP)/p97 in the formation and clearance of abnormal protein aggregates. Genes Cells 12(7):889–901. doi: 10.1111/j.1365-2443.2007.01099.x PubMedCrossRefGoogle Scholar
  19. Kondo H, Rabouille C, Newman R, Levine TP, Pappin D, Freemont P, Warren G (1997) p47 is a cofactor for p97-mediated membrane fusion. Nature 388(6637):75–78PubMedCrossRefGoogle Scholar
  20. Krick R, Bremer S, Welter E, Schlotterhose P, Muehe Y, Eskelinen EL, Thumm M (2010) Cdc48/p97 and Shp1/p47 regulate autophagosome biogenesis in concert with ubiquitin-like Atg8. J Cell Biol 190(6):965–973. doi: 10.1083/jcb.201002075 PubMedCrossRefGoogle Scholar
  21. Leger F, Fernagut PO, Canron MH, Leoni S, Vital C, Tison F, Bezard E, Vital A (2011) Protein aggregation in the aging retina. J Neuropathol Exp Neurol 70(1):63–68. doi: 10.1097/NEN.0b013e31820376cc PubMedCrossRefGoogle Scholar
  22. Lord JM, Roberts LM, Stirling CJ (2005) Quality control: another player joins the ERAD cast. Curr Biol 15(23):R963–R964. doi: 10.1016/j.cub.2005.11.013 PubMedCrossRefGoogle Scholar
  23. Marshall J (1987) The ageing retina: physiology or pathology. Eye Lond 1(Pt 2):282–295PubMedCrossRefGoogle Scholar
  24. Martinez-Vicente M, Sovak G, Cuervo AM (2005) Protein degradation and aging. Exp Gerontol 40(8–9):622–633. doi: 10.1016/j.exger.2005.07.005 PubMedCrossRefGoogle Scholar
  25. Meyer HH, Shorter JG, Seemann J, Pappin D, Warren G (2000) A complex of mammalian ufd1 and npl4 links the AAA-ATPase, p97, to ubiquitin and nuclear transport pathways. EMBO J 19(10):2181–2192PubMedCrossRefGoogle Scholar
  26. Mirza S, Plafker KS, Aston C, Plafker SM (2010) Expression and distribution of the class III ubiquitin-conjugating enzymes in the retina. Mol Vis 16:2425–2437PubMedGoogle Scholar
  27. Ozawa Y, Nakao K, Kurihara T, Shimazaki T, Shimmura S, Ishida S, Yoshimura A, Tsubota K, Okano H (2008) Roles of STAT3/SOCS3 pathway in regulating the visual function and ubiquitin-proteasome-dependent degradation of rhodopsin during retinal inflammation. J Biol Chem 283(36):24561–24570PubMedCrossRefGoogle Scholar
  28. Pickart CM (2001) Ubiquitin enters the new millennium. Mol Cell 8(3):499–504PubMedCrossRefGoogle Scholar
  29. Rabinovich E, Kerem A, Frohlich KU, Diamant N, Bar-Nun S (2002) AAA-ATPase p97/Cdc48p, a cytosolic chaperone required for endoplasmic reticulum-associated protein degradation. Mol Cell Biol 22(2):626–634PubMedCrossRefGoogle Scholar
  30. Ramkumar HL, Zhang J, Chan CC (2010) Retinal ultrastructure of murine models of dry age-related macular degeneration (AMD). Prog Retin Eye Res 29(3):169–190. doi: 10.1016/j.preteyeres.2010.02.002 PubMedCrossRefGoogle Scholar
  31. Rapaport DH, Wong LL, Wood ED, Yasumura D, LaVail MM (2004) Timing and topography of cell genesis in the rat retina. J Comp Neurol 474(2):304–324. doi: 10.1002/cne.20134 PubMedCrossRefGoogle Scholar
  32. Reddy GB, Vasireddy V, Mandal MN, Tiruvalluru M, Wang XF, Jablonski MM, Nappanveettil G, Ayyagari R (2009) A novel rat model with obesity-associated retinal degeneration. Invest Ophthalmol Vis Sci 50(7):3456–3463. doi: 10.1167/iovs.08-2498 PubMedCrossRefGoogle Scholar
  33. Remé CE, Wolfrum U, Imsand C, Hafezi F, Williams TP (1999) Photoreceptor autophagy: effects of light history on number and opsin content of degradative vacuoles. Invest Ophthalmol Vis Sci 40(10):2398–2404PubMedGoogle Scholar
  34. Riederer BM, Leuba G, Vernay A, Riederer IM (2011) The role of the ubiquitin proteasome system in Alzheimer’s disease. Exp Biol Med Maywood 236(3):268–276. doi: 10.1258/ebm.2010.010327 PubMedCrossRefGoogle Scholar
  35. Salvi SM, Akhtar S, Currie Z (2006) Ageing changes in the eye. Postgrad Med J 82(971):581–587. doi: 10.1136/pgmj.2005.040857 PubMedCrossRefGoogle Scholar
  36. Sati L, Seval-Celik Y, Demir R (2010) Lung surfactant proteins in the early human placenta. Histochem Cell Biol 133 (1):85–93. doi: 10.1007/s00418-009-0642-9 Google Scholar
  37. Sowell RA, Owen JB, Butterfield DA (2009) Proteomics in animal models of Alzheimer’s and Parkinson’s diseases. Ageing Res Rev 8(1):1–17. doi: 10.1016/j.arr.2008.07.003 PubMedCrossRefGoogle Scholar
  38. Tresse E, Salomons FA, Vesa J, Bott LC, Kimonis V, Yao TP, Dantuma NP, Taylor JP (2010) VCP/p97 is essential for maturation of ubiquitin-containing autophagosomes and this function is impaired by mutations that cause IBMPFD. Autophagy 6(2):217–227PubMedCrossRefGoogle Scholar
  39. Wilkinson KD (2000) Ubiquitination and deubiquitination: targeting of proteins for degradation by the proteasome. Semin Cell Dev Biol 11(3):141–148. doi: 10.1006/scdb.2000.0164 PubMedCrossRefGoogle Scholar
  40. Yang S, Liu T, Li S, Zhang X, Ding Q, Que H, Yan X, Wei K, Liu S (2008) Comparative proteomic analysis of brains of naturally aging mice. Neuroscience 154(3):1107–1120. doi: 10.1016/j.neuroscience.2008.04.012 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Huseyin Ortak
    • 1
  • Sevil Cayli
    • 2
  • Ufuk Tas
    • 3
  • Seda Ocakli
    • 2
  • Erkan Söğüt
    • 4
  • Helin Deniz Demir
    • 1
  1. 1.Department of Ophthalmology, Faculty of MedicineGaziosmanpasa UniversityTokatTurkey
  2. 2.Department of Histology and Embryology, Faculty of MedicineGaziosmanpasa UniversityTokatTurkey
  3. 3.Department of Anatomy, Faculty of MedicineGaziosmanpasa UniversityTokatTurkey
  4. 4.Department of Biochemistry, Faculty of MedicineGaziosmanpasa UniversityTokatTurkey

Personalised recommendations