Journal of Molecular Histology

, Volume 40, Issue 2, pp 107–115

Protective effects of thymoquinone on streptozotocin-induced diabetic nephropathy

Original Paper

Abstract

The aim of this study was designed to investigate the possible beneficial effects of the thymoquinone (TQ) in streptozotocine (STZ)-induced diabetes in rats. The rats were randomly allotted into one of three experimental groups: A (control), B (diabetic untreated), and C (diabetic treated with TQ); each group contain ten animals. B and C groups received STZ. Diabetes was induced in two groups by a single intra-peritoneal (i.p) injection of STZ (50 mg/kg, freshly dissolved in 5 mmol/l citrate buffer, pH 4.5). Two days after STZ treatment, development of diabetes in two experimental groups was confirmed by measuring blood glucose levels in a tail vein blood samples. Rats with blood glucose levels of 250 mg/dl or higher were considered to be diabetic. The rats in TQ treated groups were given TQ (50 mg/kg body weight) once a day orally by using intra gastric intubation for 12 weeks starting 2 days after STZ injection. Treatment of TQ reduced the glomerular size, thickening of capsular, glomerular and tubular basement membranes, increased amounts of mesangial matrix and tubular dilatation and renal function as compared with diabetics untreated. We conclude that TQ therapy causes renal morphologic and functional improvement after STZ-induced diabetes in rats. We believe that further preclinical research into the utility of TQ treatment may indicate its usefulness as a potential treatment in diabetic nephropathy.

Keywords

Thymoquinone iNOS Ultrastructure Diabetic nephropathy Rat 

References

  1. Allen TJ, Cao Z, Youssef S et al (1997) Role of angiotensin II and bradykinin in experimental diabetic nephropathy: functional and structural studies. Diabetes 46:1612–1618. doi:10.2337/diabetes.46.10.1612 CrossRefPubMedGoogle Scholar
  2. Badary OA (1999) Thymoquinone attenuates ifosfamide-induced fanconi syndrome in rats and enhances its antitumour activity in mice. J Ethnopharmacol 67:135–142. doi:10.1016/S0378-8741(98)00242-6 CrossRefPubMedGoogle Scholar
  3. Badary OA, Nagi MN, Al-Shabanah OA et al (1997) Thymoquinone ameliorates the nephrotoxicity induced by cisplatin in rodents and potentiates its antitumor activity. Can J Physiol Pharmacol 75:1356–1361. doi:10.1139/cjpp-75-12-1356 CrossRefPubMedGoogle Scholar
  4. Badary OA, Abdel-Naim AB, Abdel-Wahab MH et al (2000) The influence of thymoquinone on doxorubicin-induced hyperlipidemic nephropathy in rats. Toxicology 143:219–226. doi:10.1016/S0300-483X(99)00179-1 CrossRefPubMedGoogle Scholar
  5. Bendayan M (1985) Alteration in the distribution of type IV collagen in glomerular basal laminae in diabetic rats as revealed by immunocytochemistry and morphological approach. Diabetologia 28:373–378. doi:10.1007/BF00283147 CrossRefPubMedGoogle Scholar
  6. Bertani T, Cutillo F, Zoja C et al (1986) Tubulo-interstitial lesions mediate renal damage in adriamycin glomerulopathy. Kidney Int 30:488–496. doi:10.1038/ki.1986.212 CrossRefPubMedGoogle Scholar
  7. Border WA, Yamamoto T, Noble NA (1996) Transforming growth factor b in diabetic nephropathy. Diabetes Metab Rev 12:309–339. doi:10.1002/(SICI)1099-0895(199612)12:4<309::AID-DMR171>3.0.CO;2-A CrossRefPubMedGoogle Scholar
  8. Bunn HF (1891) Non-enzymatic glycosylation of protein: relevance to diabetes. Am J Med 70:325–330. doi:10.1016/0002-9343(81)90769-5 CrossRefGoogle Scholar
  9. Cattell V, Cook T, Moncada S et al (1990) Glomeruli synthetise nitrite in experimental nephrotoxic nephritis. Kidney Int 38:1056–1060. doi:10.1038/ki.1990.312 CrossRefPubMedGoogle Scholar
  10. Chakravarty N (1993) Inhibition of histamine release from mast cells by Nigellone. Ann Allergy 70:237–242PubMedGoogle Scholar
  11. Desassis JF, Raats CJI, Bakker MAH et al (1997) Antiproteinuric effect of ciclosporin A in adriamycin nephropathy in rats. Nephron 75:336–341. doi:10.1159/000189558 CrossRefPubMedGoogle Scholar
  12. El-Abhar HS, Abdallah DM, Saleh S (2003) Gastroprotective activity of Nigella sativa oil and its constituent, thymoquinone, against gastric mucosal injury induced by ischaemia/reperfusion in rats. J Ethnopharmacol 84:251–258. doi:10.1016/S0378-8741(02)00324-0 CrossRefPubMedGoogle Scholar
  13. El-Dakhakhny M, Mady N, Lembert N et al (2002) The hypoglycemic effect of Nigella sativa oil is mediated by extrapancreatic actions. Planta Med 68(5):465–466. doi:10.1055/s-2002-32084 CrossRefPubMedGoogle Scholar
  14. Erensoy N, Yılmazer S, Ozturk M et al (2004) Effects of ACE inhibition on the expression of type IV collagen and laminin in renal glomeruli in experimental diabetes. Acta Histochem 106:279–287PubMedGoogle Scholar
  15. Fararh KM, Shimizu Y, Shiina T et al (2005) Thymoquinone reduces hepatic glucose production in diabetic hamsters. Res Vet Sci 79:219–223. doi:10.1016/j.rvsc.2005.01.001 CrossRefPubMedGoogle Scholar
  16. Funabiki K, Makito Y, Yamamoto M et al (1998) Dissociated expression of collagen type IV subchains in diabetic kidneys of KKAy mice. Nephron 80:208–213. doi:10.1159/000045169 CrossRefPubMedGoogle Scholar
  17. Haffernan S, James V, Zilkens R et al (1996) Changes of extracellular matrix in a baboon (Papio hamadryas) model of insulin dependent diabetes: studies using electron microscopy and X-ray diffraction technique. Diabetes Res Clin Pract 34:65–72. doi:10.1016/S0168-8227(96)01335-6 CrossRefGoogle Scholar
  18. Hales CN, Randle PJ (1963) Immunoassay of insulin with insulin-antibody precipitate. Biochem J 88:137–146PubMedGoogle Scholar
  19. Hasslacher C, Bostedt-Kiesel A, Kempe HP (1992) ACE inhibitor effects on structure and function of the glomerular basement membrane. Klin Wochenschr 69(Suppl. 29):39–44PubMedGoogle Scholar
  20. Hedaya SA (1995) Effect of Nigella sativa seed (Black seeds) extract on some haematological and biochemical parameters in rats. Alex J Vet Sci 2:95–99Google Scholar
  21. Houghton PJ, Zarka R, de las Heras B et al (1995) Fixed oil of Nigella sativa and derived thymoquinone inhibit eicosanoid generation in leukocytes and membrane lipid peroxidation. Planta Med 61:33–36. doi:10.1055/s-2006-957994 CrossRefPubMedGoogle Scholar
  22. Hsu SM, Raine L, Fanger H (1981) Use of avidin–biotin-peroxidase complex (ABC) in immunperoxidase techniques: a comparison between ABC and unlabeled antibody (PAP) procedures. J Histochem Cytochem 29:577–580PubMedGoogle Scholar
  23. Huang TW (1980) The nature of basal lamina alterations in human diabetic glomerulosclerosis. Am J Pathol 100:225–238PubMedGoogle Scholar
  24. Ihm C-G, Lee GSL, Nast CC et al (1992) Early increased renal procollagen a1 (IV) mRNA levels in streptozotocin induced diabetes. Kidney Int 41:768–777. doi:10.1038/ki.1992.120 CrossRefPubMedGoogle Scholar
  25. Ishikawa Y, Watanabe K, Takeno H et al (1998) Effect of the novel oral antidiabetic agent HQL-975 on oral glucose and lipid metabolism in diabetic db/db mice. Arzneim Forsch. Drug Res 48:245–250Google Scholar
  26. Isogai S, Kameyama M, Iso K et al (1998) Protective effects of a small dose of captopril on the reduction of glomerular basement membrane anionic sites in spontaneously hypertensive rats with streptozotocin induced diabetes. J Diabetes Complications 12:170–175. doi:10.1016/S1056-8727(97)00076-7 CrossRefPubMedGoogle Scholar
  27. Jensen EB, Guntersen HJG, Osterby R (1979) Determination of membrane thickness distribution from orthogonal intercepts. J Microsc 115:19–33PubMedGoogle Scholar
  28. Kanter M (2008) Effects of Nigella sativa and its major constituent, thymoquinone on sciatic nerves in experimental diabetic neuropathy. Neurochem Res 33:87–96. doi:10.1007/s11064-007-9419-5 CrossRefPubMedGoogle Scholar
  29. Kanter M, Meral I, Yener Z et al (2003) Partial regeneration/proliferation of the ß-cells in the islets of Langerhans by Nigella sativa L. in streptozocin-induced diabetic rats. Tohoku J Exp Med 20:213–219. doi:10.1620/tjem.201.213 CrossRefGoogle Scholar
  30. Kanter M, Coskun O, Korkmaz A et al (2004) Effects of Nigella sativa on oxidative stress and ß-cell damage in streptozocin-induced diabetic rats. Anat Rec 279:685–691. doi:10.1002/ar.a.20056 CrossRefGoogle Scholar
  31. Karttunen T, Risteli J, Autio-Harmainen H et al (1986) Effect of age and diabetes on type IV collagen and laminin in human kidney cortex. Kidney Int 30:586–591. doi:10.1038/ki.1986.225 CrossRefPubMedGoogle Scholar
  32. Koya D, Haneda M, Nakagawa H et al (2000) Amelioration of accelerated diabetic mesangial expansion by treatment with a PKC beta inhibitor in diabetic db/db mice, a rodent model for type 2 diabetes. FASEB J 14:439–447PubMedGoogle Scholar
  33. Martin GR, Rohrbach DH, Terranova VP (1983) Structure, function and pathology of basement membranes. In: Wagner BM, Fleischmajer R, Kaufman N et al (eds) Connective tissue disease. Williams and Wilkins, Baltimore, pp 16–30Google Scholar
  34. Mauer SM, Steffes MW, Ellis EN et al (1984) Structural–functional relationships in diabetic nephropathy. J Clin Invest 74:1143–1155. doi:10.1172/JCI111523 CrossRefPubMedGoogle Scholar
  35. Mohamed A, Shoker A, Bendjelloul F et al (2003) Improvement of experimental allergic encephalomyelitis (EAE) by thymoquinone; an oxidative stress inhibitor. Biomed Sci Instrum 39:440–445PubMedGoogle Scholar
  36. Mohamed A, Afridi DM, Garani O et al (2005) Thymoquinone inhibits the activation of NF-kappaB in the brain and spinal cord of experimental autoimmune encephalomyelitis. Biomed Sci Instrum 41:388–393PubMedGoogle Scholar
  37. Montilla P, Tunez I, Munoz MC et al (1997) Hyperlipidemic nephropathy induced by adriamycin: effect of melatonin administration. Nephron 76:345–350. doi:10.1159/000190202 CrossRefPubMedGoogle Scholar
  38. Nagi MN, Mansour MA (2000) Protective effect of thymoquinone against doxorubicin-induced cardiotoxicity in rats: a possible mechanism of protection. Pharmacol Res 41:283–289. doi:10.1006/phrs.1999.0585 CrossRefPubMedGoogle Scholar
  39. Nagi MN, Alam K, Badary OA et al (1999) Thymoquinone protects against carbon tetrachloride hepatotoxicity in mice via an antioxidant mechanism. Biochem Mol Biol Int 47:153–159PubMedGoogle Scholar
  40. Osterby R, Gundersen HJG (1980) Fast accumulation of basement membrane material and the rate of morphological changes in acute experimental diabetic glomerular hypertrophy. Diabetologia 18:493–500. doi:10.1007/BF00261706 CrossRefPubMedGoogle Scholar
  41. Osterby R, Bangstad HJ, Nyberg G et al (2001) On glomerular structural alterations in type-1 diabetes. Companions of early diabetic glomerulopathy. Virchows Arch 438:129–135. doi:10.1007/s004280000311 CrossRefPubMedGoogle Scholar
  42. Park IS, Kiyomoto H, Abboud SL et al (1997) Expression of transforming growth factor-beta and type IV collagen in early streptozotocin-induced diabetes. Diabetes 46:473–480. doi:10.2337/diabetes.46.3.473 CrossRefPubMedGoogle Scholar
  43. Passey RB, Gillum RF, Fuller JB et al (1977) Evaluation and comparison of 10 glucose methods and the reference method recommended in the proposed product class standard (1974). Clin Chem 23:131–139PubMedGoogle Scholar
  44. Reddi AS, Ramamurthi R, Miller M et al (1991) Enalapril improves albuminuria by preventing glomerular loss of heparan sulfate in diabetic rats. Biochem Med Metab Biol 45:119–131. doi:10.1016/0885-4505(91)90014-C CrossRefPubMedGoogle Scholar
  45. Reddi AS, Nimmagadda VR, Arora R (2001) Effect of antihypertensive therapy on renal artery structure in type 2 diabetic rats with hypertension. Hypertension 37:1273–1278PubMedGoogle Scholar
  46. Rohrbach DH, Wagner CW, Star VL et al (1983) Reduced synthesis of basement membrane heparan sulfate proteoglycan in streptozotocininduced diabetic mice. J Biol Chem 258:11672–11677PubMedGoogle Scholar
  47. Sen S, Kanter M, Ustundag S et al (2008) Effect of angiotensin-converting enzyme ınhibition and angiotensin II type 1 receptor blockade on streptozotocin-ınduced diabetic nephropathy. Ren Fail 30(10):1023–1033. doi:10.1080/08860220802495248 CrossRefPubMedGoogle Scholar
  48. Shimomura H, Spiro RG (1987) Studies on macromolecular components of human glomerular basement membrane and alterations in diabetes. Decreased levels of heparan sulfate proteoglycan and laminin. Diabetes 36:374–381. doi:10.2337/diabetes.36.3.374 CrossRefPubMedGoogle Scholar
  49. Steffes MW, Brown DM, Basgen JM et al (1979) Glomerular basement membrane thickness following islet transplantation in the diabetic rat. Lab Invest 41:116–118PubMedGoogle Scholar
  50. Striker GE, Eastman RD, Striker LJ (1996) Diabetic nephropathy. Molecular analysis of extracellular matrix and clinical studies update. Nephrol Dial Transplant 11(Suppl. 5):58–61PubMedGoogle Scholar
  51. Tamsma JT, Van den Born J, Bruijn JA et al (1994) Expression of glomerular extracellular matrix components in human diabetic nephropathy: decrease of heparan sulphate in the glomerular basement membrane. Diabetologia 37:313–320. doi:10.1007/BF00398060 CrossRefPubMedGoogle Scholar
  52. Tarsio JF, Reger LA, Furcht LT (1988) Molecular mechanisms in basement membrane complications of diabetes: alterations in heparin, laminin and type IV collagen association. Diabetes 37:532–539. doi:10.2337/diabetes.37.5.532 CrossRefPubMedGoogle Scholar
  53. Venkatesan N, Venkatesan P, Karthikeyan J et al (1997) Protection by taurine against adriamycin-induced proteinuria and hyperlipidemia in rats. Proc Soc Exp Biol Med 215:158–164PubMedGoogle Scholar
  54. Wolf G, Ziyadeh FN (1997) The role of angiotensin II in diabetic nephropathy: emphasis on nonhemodynamic mechanisms. Am J Kidney Dis 29:153–163. doi:10.1016/S0272-6386(97)90023-8 CrossRefPubMedGoogle Scholar
  55. Zima T, Tesar V, Stipek S et al (1997) The influence of cyclosporin on lipid peroxidation and superoxide dismutase in adriamycin nephropathy in rats. Nephron 75:464–468. doi:10.1159/000189586 CrossRefPubMedGoogle Scholar
  56. Ziyadeh FN (1993) Renal tubular membrane and collagen type IV in diabetes mellitus. Kidney Int 43:114–120. doi:10.1038/ki.1993.19 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  1. 1.Department of Histology and Embryology, Faculty of MedicineTrakya UniversityEdirneTurkey

Personalised recommendations