Journal of Molecular Histology

, Volume 39, Issue 6, pp 585–593 | Cite as

TSG-6 protein expression in the pancreatic islets of NOD mice

  • M. Kvezereli
  • S. A. Michie
  • T. Yu
  • R. J. Creusot
  • M. J. Fontaine
Original Paper

Abstract

The histologic hallmark of the development of type 1 diabetes (T1D) is insulitis, characterized by leukocytic infiltration of the pancreatic islets. The molecules controlling the early influx of leukocytes into the islets are poorly understood. Tumor necrosis factor α (TNFα)-stimulated gene 6 (TSG-6) is involved in inflammation, extracellular matrix formation, cell migration, and development. In the present study, we examined the expression and cellular localization of TSG-6 protein in islets of female non-obese diabetic (NOD) mice using frozen section immunofluorescence staining. Pancreata from nondiabetic (8 and 25 weeks old), prediabetic (230–280 mg/dl blood glucose) and diabetic (>300 mg/dl blood glucose) NOD mice were stained for TSG-6, insulin, CD3, CD11c, Mac3 and CD31. TSG-6 protein was detected in 67% of islets of prediabetic mice, 27% of islets of 25-week old nondiabetic mice, and less than 7% of islets of diabetic mice and 8-week old nondiabetic mice. Lastly, islet-derived TSG-6 protein was localized to the infiltrating CD3 and CD11c positive leukocytes.

Keywords

Type 1 diabetes Insulitis Inflammation TSG-6 Dendritic cells T lymphocytes 

Notes

Acknowledgements

We would like to acknowledge Dr. C. Garrison Fathman for providing us with lentiviral plasmids, Anet James for assistance with the artwork, and Claudia Benike and Donna Jones for critical reviews of the manuscript. We would like to thank Dr. Edgar Engleman for making all the necessary laboratory equipment accessible.

This work was supported by:

Dean’s Postdoctoral Fellowship, Stanford University (to M.K.)

Department of Pathology Research Fund at Stanford (to M.J.F.)

Juvenile Diabetes Research Foundation Grant 1-2001-56 (to S.A.M.)

National Institutes of Health Grant R01 DK67592 (to S.A.M.)

Juvenile Diabetes Research Foundation Postdoctoral Fellowship (to R.J.C.)

Supplementary material

10735_2008_9199_MOESM1_ESM.jpg (69 kb)
MOESM1 [TSG-6 gene fragment amplified by PCR. Lane 1 shows DNA markers, Lane 2 indicates 851 bp fragment of the TSG-6 gene] (JPG 68 kb)
10735_2008_9199_MOESM2_ESM.jpg (3.4 mb)
MOESM2 [Immunoblotting of TSG-6 protein in lentiviral-transduced 293T cells. Lane 1 is 35 kDa recombinant TSG-6 protein as a positive control, Lane 2 is untransduced 293T cells, Lane 3 is 293T cells transduced with GFP only expressing-lentivirus, Lanes 4 and 5 are 293T cells transduced with TSG-6 GFP lentivirus at multiplicity of infection of 10 and 15, respectively] (JPG 3489 kb)

References

  1. Andre I, Gonzalez A, Wang B, Katz J, Benoist C, Mathis D (1996) Checkpoints in the progression of autoimmune disease: lessons from diabetes models. Proc Natl Acad Sci USA 93:2260–2263. doi: 10.1073/pnas.93.6.2260 PubMedCrossRefGoogle Scholar
  2. Bárdos T, Kamath RV, Mikecz K, Glant TT (2001) Anti-inflammatory and chondroprotective effect of TSG–6 (tumor necrosis factor-α-stimulated gene-6) in murine models of experimental arthritis. Am J Pathol 159:1711–1721PubMedGoogle Scholar
  3. Bayliss MT, Howat SLT, Dudhia J, Murphy JM, Barry FP, Edwards JC, Day AJ (2001) Up-regulation and differential expression of hyaluronan-binding protein TSG-6 in cartilage and synovium in rheumatoid arthritis and osteoarthritis. Osteoarthritis Cartilage 9:42–48. doi: 10.1053/joca.2000.0348 PubMedCrossRefGoogle Scholar
  4. Breckpot K, Dullaers M, Bonehill A, Van Meirvenne S, Heirman C, De Greef C, van der Bruggen P, Thielemans K (2003) Lentivirally transduced dendritic cells as a tool for cancer immunotherapy. J Gene Med 5:654–667. doi: 10.1002/jgm.400 PubMedCrossRefGoogle Scholar
  5. Cao TV, La M, Getting SJ, Day AJ, Perretti M (2004) Inhibitory effects of TSG-6 link module on leukocyte–endothelial cell interactions in vitro and in vivo. Microcirculation 11:615–624. doi: 10.1080/10739680490503438 PubMedCrossRefGoogle Scholar
  6. Charlton B, Bacelj A, Mandel TE (1988) Administration of silica particles or anti-Lyt2 antibody prevents β-cell destruction in NOD mice given cyclophosphamide. Diabetes 37:930–935. doi: 10.2337/diabetes.37.7.930 PubMedCrossRefGoogle Scholar
  7. Day AJ, Prestwich GD (2002) Hyaluronan-binding proteins: tying up the giant. J Biol Chem 277:4585–4588. doi: 10.1074/jbc.R100036200 PubMedCrossRefGoogle Scholar
  8. DeGrendele HC, Estess P, Picker LJ, Siegelman MH (1996) CD44 and its ligand hyaluronate mediate rolling under physiologic flow: a novel lymphocyte-endothelial cell primary adhesion pathway. J Exp Med 183:1119–1130. doi: 10.1084/jem.183.3.1119 PubMedCrossRefGoogle Scholar
  9. DeGrendele HC, Estess P, Siegelman MH (1997) Requirement for CD44 in activated T cell extravasation into an inflammatory site. Science 278:672–675. doi: 10.1126/science.278.5338.672 PubMedCrossRefGoogle Scholar
  10. DiCosmo B, Picarella D, Flavell RA (1994) Local production of human IL-6 promotes insulitis but retards the onset of insulin-dependent diabetes mellitus in non-obese diabetic mice. Int Immunol 6:1829–1837. doi: 10.1093/intimm/6.12.1829 PubMedCrossRefGoogle Scholar
  11. Eisenbarth GS (1986) Type I diabetes mellitus: a chronic autoimmune disease. N Engl J Med 314:1360–1368PubMedGoogle Scholar
  12. Fülöp C, Kamath RV, Li Y, Otto JM, Salustr A, Olsen BR, Glant TT, Hascall VC (1997) Coding sequence, exon-intron structure and chromosomal localization of murine TNF-stimulated gene 6 that is specifically expressed by expanding cumulus cell-oocyte complexes. Gene 202:95–102. doi: 10.1016/S0378-1119(97)00459-9 PubMedCrossRefGoogle Scholar
  13. Gordon S (1998) The role of the macrophage in immune regulation. Res Immunol 149:685–688. doi: 10.1016/S0923-2494(99)80039-X PubMedCrossRefGoogle Scholar
  14. Green EA, Wong FS, Eshima K, Mora C, Flavell RA (2000) Neonatal tumor necrosis factor α promotes diabetes in nonobese diabetic mice by CD154-independent antigen presentation to CD8+ T Cells. J Exp Med 191:225–238. doi: 10.1084/jem.191.2.225 PubMedCrossRefGoogle Scholar
  15. Haskins K, Portas M, Bradley B, Wegmann D, Lafferty K (1988) T-lymphocyte clone specific for pancreatic islet antigen. Diabetes 37:1444–1448. doi: 10.2337/diabetes.37.10.1444 PubMedCrossRefGoogle Scholar
  16. Huleatt JW, Lefrancois L (1995) Antigen-driven induction of CD11c on intestinal intraepithelial lymphocytes and CD8+ T cells in vivo. J Immunol 154:5684–5693PubMedGoogle Scholar
  17. Ihm SH, Yoon JW (1990) Studies on autoimmunity for initiation of β-cell destruction. VI. Macrophages essential for development of β-cell-specific cytotoxic effectors and insulitis in NOD mice. Diabetes 39:1273–1278. doi: 10.2337/diabetes.39.10.1273 PubMedCrossRefGoogle Scholar
  18. Lee TH, Wisniewski HG, Vilcek J (1992) A novel secretory tumor necrosis factor-inducible protein (TSG-6) is a member of the family of hyaluronate binding proteins, closely related to the adhesion receptor CD44. J Cell Biol 116:545–557. doi: 10.1083/jcb.116.2.545 PubMedCrossRefGoogle Scholar
  19. Lee LF, Xu B, Michie SA, Beilhack GF, Warganich T, Turley S, McDevitt HO (2005) The role of TNFα in the pathogenesis of type 1 diabetes in the nonobese diabetic mouse: analysis of dendritic cell maturation. Proc Natl Acad Sci USA 102:15995–16000. doi: 10.1073/pnas.0508122102 PubMedCrossRefGoogle Scholar
  20. Lesley L, Gál I, Mahoney DJ, Cordell MR, Rugg MS, Hyman R, Day AJ, Mikecz K (2004) TSG-6 modulates the interaction between hyaluronan and cell surface CD44. J Biol Chem 279:25745–25754. doi: 10.1074/jbc.M313319200 PubMedCrossRefGoogle Scholar
  21. Lin Y, Roberts TJ, Sriram V, Cho S, Brutkiewicz RR (2003) Myeloid marker expression on antiviral CD8+ T cells following an acute virus infection. Eur J Immunol 33:2736–2743. doi: 10.1002/eji.200324087 PubMedCrossRefGoogle Scholar
  22. Maier R, Wisniewski HG, Vilcek J, Lotz M (1996) TSG-6 expression in human articular chondrocytes. Possible implications in joint inflammation and cartilage degradation. Arthritis Rheum 39:552–559. doi: 10.1002/art.1780390403 PubMedCrossRefGoogle Scholar
  23. Milner CM, Day AJ (2003) TSG-6: a multifunctional protein associated with inflammation. J Cell Sci 116:1863–1873. doi: 10.1242/jcs.00407 PubMedCrossRefGoogle Scholar
  24. Mindrescu C, Thorbecke GJ, Klein MJ, Vilček J, Wisniewski HG (2000) Amelioration of collagen-induced arthritis in DBA/1 J mice by recombinant TSG-6, a tumor necrosis factor/interleukin-1-inducible protein. Arthritis Rheum 43:2668–2677. doi:10.1002/1529-0131(200012)43:12<2668::AID-ANR6>3.0.CO;2-EPubMedCrossRefGoogle Scholar
  25. Mindrescu C, Dias AA, Olszewski RJ, Klein MJ, Reis LF, Wisniewski HG (2002) Reduced susceptibility to collagen-induced arthritis in DBA/1 J mice expressing the TSG-6 transgene. Arthritis Rheum 46:2453–2464. doi: 10.1002/art.10503 PubMedCrossRefGoogle Scholar
  26. Muller WA (2002) Leukocyte–endothelial cell interactions in the inflammatory response. Lab Invest 82:521–533. doi: 10.1038/labinvest.3780446 PubMedCrossRefGoogle Scholar
  27. Parkar AA, Day AJ (1997) Overlapping sites on the link module of human TSG-6 mediate binding to hyaluronan and chrondroitin-4-sulphate. FEBS Lett 410:413–417. doi: 10.1016/S0014-5793(97)00621-2 PubMedCrossRefGoogle Scholar
  28. Parkar AA, Kahmann JD, Howat SLT, Bayliss MT, Day AJ (1998) TSG-6 interacts with hyaluronan and aggrecan in a pH-dependent manner via a common functional element: implications for its regulation in inflamed cartilage. FEBS Lett 428:171–176. doi: 10.1016/S0014-5793(98)00523-7 PubMedCrossRefGoogle Scholar
  29. Pozzilli P, Signore A, William AJ, Beales PE (1993) NOD mouse colonies around the world-recent facts and figures. Immunol Today 14:193–196. doi: 10.1016/0167-5699(93)90160-M PubMedCrossRefGoogle Scholar
  30. Roep BO, Kallan AA, Duinkerken G, Arden SD, Hutton JC, Bruining GJ, de Vries RR (1995) T-cell reactivity to beta-cell membrane antigens associated with beta-cell destruction in IDDM. Diabetes 44:278–283. doi: 10.2337/diabetes.44.3.278 PubMedCrossRefGoogle Scholar
  31. Serreze DV, Leiter EH (1994) Genetic and pathogenic basis of autoimmune diabetes in NOD mice. Curr Opin Immunol 6:900–906. doi: 10.1016/0952-7915(94)90011-6 PubMedCrossRefGoogle Scholar
  32. Tisch R, McDevitt HO (1996) Insulin-dependent diabetes mellitus. Cell 5:291–297. doi: 10.1016/S0092-8674(00)81106-X CrossRefGoogle Scholar
  33. Turley S, Poirot L, Hattori M, Benoist C, Mathis D (2003) Physiological β cell death triggers priming of self-reactive T cells by dendritic cells in a type-1 diabetes model. J Exp Med 198:1527–1537. doi: 10.1084/jem.20030966 PubMedCrossRefGoogle Scholar
  34. von Herrath MG, Oldstone MB (1997) Interferon-gamma is essential for destruction of beta cells and development of insulin-dependent diabetes mellitus. J Exp Med 3:531–539. doi: 10.1084/jem.185.3.531 CrossRefGoogle Scholar
  35. Wisniewski HG, Vilcek J (1997) TSG-6: an IL-1/TNF-inducible protein with anti-inflammatory activity. Cytokine Growth Factor Rev 8:143–156. doi: 10.1016/S1359-6101(97)00008-7 PubMedCrossRefGoogle Scholar
  36. Wisniewski HG, Maier R, Lotz M, Lee S, Klampfer L, Lee TH, Vilcek J (1993) TSG-6: a TNF-, IL-1-, and LPS-inducible secreted glycoprotein associated with arthritis. J Immunol 151:6593–6601PubMedGoogle Scholar
  37. Wisniewski HG, Hua JC, Poppers DM, Naime D, Vilcek J, Cronstein BN (1996) TNF/IL1-inducible protein TSG-6 potentiates plasmin inhibition by inter-α-inhibitor and exerts a strong anti-inflammatory effect in vivo. J Immunol 156:1609–1615PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • M. Kvezereli
    • 1
  • S. A. Michie
    • 1
  • T. Yu
    • 1
  • R. J. Creusot
    • 2
  • M. J. Fontaine
    • 1
  1. 1.Department of PathologyStanford University School of MedicineStanfordUSA
  2. 2.Department of MedicineStanford University School of MedicineStanfordUSA

Personalised recommendations