Mesenchymal cells contribute to the synthesis and deposition of the laminin-5 γ2 chain in the invasive front of oral squamous cell carcinoma

  • Marcus Franz
  • Petra Richter
  • Christiane Geyer
  • Torsten Hansen
  • Lorena Dominguez Acuña
  • Peter Hyckel
  • Frank D. Böhmer
  • Hartwig Kosmehl
  • Alexander BerndtEmail author
Original Paper


Tumour progression in oral squamous cell carcinoma (OSCC) is associated with a reorganisation of extracellular matrix. Laminin-5 (Ln-5) plays an important role for tumour migration and shows an increased expression in areas of direct tumour/stroma interactions. We have previously shown stromal spot like Ln-5/γ2 chain deposits distant from the basement membrane region. In this study we have analysed which cell type is responsible for Ln-5/γ2 chain synthesis in situ. Furthermore, we studied its spatial relation to TGF-β1 as well as the Ln-5 modulating enzymes matrix metalloproteinase (MMP) 2, membrane type-1 (MT1-) MMP and bone morphogenetic protein (BMP-) 1 by different techniques including triple immunofluorescence labelling and in situ hybridisation in OSCC. We found that the stromal spot-like Ln-5 deposits occurred in the invasive front in the vicinity of mesenchymal cells and vessel structures. In particular, not only carcinoma cells but also mesenchymal cells were shown to express the Ln-5/γ2 chain mRNA. Moreover, stromal Ln-5 deposits showed a spatial association with TGF-β1 as well as with MT1-MMP and BMP-1. Based on these findings we suggest that mesenchymal cells contribute to the promotion of tumour cell migration as well as vessel formation in OSCC by providing and organising promigratory Ln-5 fragments.


Oral squamous cell carcinoma Extracellular matrix Laminin-5 TGF-β1 MMP2 MT1-MMP BMP-1 Immunofluorescence In situ hybridisation 



The authors would like to thank Susanne Köllner and Christiane Geier for excellent technical assistance. The study was partially supported by the Thuringian Ministry of Science, Research and Art (ThMWFK) and IZKF of the University Jena (B307-04004) and by the European Community (FP6, LSH-CT-2003-5032, STROMA; this publication reflects only the authors view. The European Commission is not liable for any use that may be made of the information contained).


  1. Amano S, Scott IC, Takahara K, Koch M, Champliaud MF, Gerecke DR, Keene DR, Hudson DL, Nishiyama T, Lee S, Greenspan DS, Burgeson RE (2000) Bone morphogenetic protein 1 is an extracellular processing enzyme of the laminin 5 gamma 2 chain. J Biol Chem 275:22728–22735PubMedCrossRefGoogle Scholar
  2. Aumailley M, Bruckner-Tuderman L, Carter WG, Deutzmann R, Edgar D, Ekblom P, Engel J, Engvall E, Hohenester E, Jones JC, Kleinman HK, Marinkovich MP, Martin GR, Mayer U, Meneguzzi G, Miner JH, Miyazaki K, Patarroyo M, Paulsson M, Quaranta V, Sanes JR, Sasaki T, Sekiguchi K, Sorokin LM, Talts JF, Tryggvason K, Uitto J, Virtanen I, von der Mark K, Wewer UM, Yamada Y, Yurchenco PD (2005) A simplified laminin nomenclature. Matrix Biol 24:326–332PubMedCrossRefGoogle Scholar
  3. Berndt A, Borsi L, Luo X, Zardi L, Katenkamp D, Kosmehl H (1998) Evidence of ED-B + fibronectin synthesis in human tissues by non-radioactive RNA in situ hybridization. Investigations on carcinoma (oral squamous cell and breast carcinoma), chronic inflammation (rheumatoid synovitis) and fibromatosis (Morbus Dupuytren). Histochem Cell Biol 109:249–255PubMedCrossRefGoogle Scholar
  4. Berndt A, Borsi L, Hyckel P, Kosmehl H (2001) Fibrillary co-deposition of laminin-5 and large unspliced tenascin-C in the invasive front of oral squamous cell carcinoma in vivo and in vitro. J Cancer Res Clin Oncol 127:286–292PubMedCrossRefGoogle Scholar
  5. Carter WG, Ryan MC, Gahr PJ (1991) Epiligrin, a new cell adhesion ligand for integrin alpha 3 beta 1 in epithelial basement membranes. Cell 65:599–610PubMedCrossRefGoogle Scholar
  6. Colognato H, Yurchenco PD (2000) Form and function: the laminin family of heterotrimers. Dev Dyn 218:213–234PubMedCrossRefGoogle Scholar
  7. Dang D, Yang Y, Li X, Atakilit A, Regzi J, Eisele D, Ellis D, Ramos DM (2004) Matrix metalloproteinases and TGFb1 modulate oral tumor cell matrix. Biochem Biophys Res Commun 316:937–942PubMedCrossRefGoogle Scholar
  8. Derynck R, Jarrett JA, Chen EY, Eaton DH, Bell JR, Assoian RK, Roberts AB, Sporn MB, Goeddel DV (1985) Human transforming growth factor-beta complementary DNA sequence and expression in normal and transformed cells. Nature 316:701–705PubMedCrossRefGoogle Scholar
  9. De Wever O, Mareel M (2003) Role of tissue stroma in cancer cell invasion. J Pathol 200:429–447PubMedCrossRefGoogle Scholar
  10. Engbring JA, Kleinman HK (2003) The basement membrane matrix in malignancy. J Pathol 200:465–470PubMedCrossRefGoogle Scholar
  11. Fleischmajer R, Utani A, MacDonald ED, Perlish JS, Pan TC, Chu ML, Nomizu M, Ninomiya Y, Yamada Y (1998) Initiation of skin basement membrane formation at the epidermo-dermal interface involves assembly of laminins through binding to cell membrane receptors. J Cell Sci 111:1929–1940PubMedGoogle Scholar
  12. Fortunato SJ, Menon R, Lombardi SJ (1998) Expression of a progelatinase activator (MT1-MMP) in human fetal membranes. Am J Reprod Immunol 39:316–322PubMedGoogle Scholar
  13. Franz M, Hansen T, Richter P, Borsi L, Boehmer FD, Hyckel P, Schleier P, Katenkamp D, Zardi L, Kosmehl H, Berndt A (2006) Complex formation of the laminin-5 gamma2 chain and large unspliced tenascin-C in oral squamous cell carcinoma in vitro and in situ: implications for sequential modulation of extracellular matrix in the invasive tumor front. Histochem Cell Biol 126:125–131PubMedCrossRefGoogle Scholar
  14. Gagnoux-Palacios L, Allegra M, Spirito F, Pommeret O, Romero C, Ortonne JP, Meneguzzi G (2001) The short arm of the laminin gamma2 chain plays a pivotal role in the incorporation of laminin 5 into the extracellular matrix and in cell adhesion. J Cell Biol 153:835–850PubMedCrossRefGoogle Scholar
  15. Ge G, Greenspan DS (2006) BMP1 controls TGFbeta1 activation via cleavage of latent TGFbeta-binding protein. J Cell Biol 175:111–120PubMedCrossRefGoogle Scholar
  16. Giannelli G, Bergamini C, Fransvea E, Sgarra C, Antonaci S (2005) Laminin-5 with transforming growth factor-beta1 induces epithelial to mesenchymal transition in hepatocellular carcinoma. Gastroenterology 129:1375–1383PubMedCrossRefGoogle Scholar
  17. Giannelli G, Falk-Marzillier J, Schiraldi O, Stetler-Stevenson WG, Quaranta V (1997) Induction of cell migration by matrix metalloprotease-2 cleavage of laminin-5. Science 277:225–228PubMedCrossRefGoogle Scholar
  18. Haapasalmi K, Makela M, Oksala O, Heino J, Yamada KM, Uitto VJ, Larjava H (1995) Expression of epithelial adhesion proteins and integrins in chronic inflammation. Am J Pathol 147:193–206PubMedGoogle Scholar
  19. Haas KM, Berndt A, Stiller KJ, Hyckel P, Kosmehl H (2001) A comparative quantitative analysis of laminin-5 in the basement membrane of normal, hyperplastic, and malignant oral mucosa by confocal immunofluorescence imaging. J Histochem Cytochem 49:1261–1268PubMedGoogle Scholar
  20. Hase T, Kawashiri S, Tanaka A, Nozaki S, Noguchi N, Kato K, Nakaya H, Nakagawa K (2006) Correlation of basic fibroblast growth factor expression with the invasion and the prognosis of oral squamous cell carcinoma. J Oral Pathol Med 35:136–139PubMedCrossRefGoogle Scholar
  21. Hatakeyama S, Gao YH, Ohara-Nemoto Y, Kataoka H, Satoh M (1997) Expression of bone morphogenetic proteins of human neoplastic epithelial cells. Biochem Mol Biol Int 42:497–505PubMedGoogle Scholar
  22. Horstmeyer A, Licht C, Scherr G, Eckes B, Krieg T (2005) Signalling and regulation of collagen I synthesis by ET-1 and TGF-beta1. FEBS J 272:6297–6309PubMedCrossRefGoogle Scholar
  23. Jin X, Li J, Li Z, Li Y (2001) Expression of transforming growth factor beta(TGFbeta) subtypes in oral squamous cell carcinoma. Hua Xi Kou Qiang Yi Xue Za Zhi 19:377–379PubMedGoogle Scholar
  24. Jinnin M, Ihn H, Asano Y, Yamane K, Trojanowska M, Tamaki K (2004) Tenascin-C upregulation by transforming growth factor-beta in human dermal fibroblasts involves Smad3, Sp1, and Ets1. Oncogene 23:1656–1667PubMedCrossRefGoogle Scholar
  25. Kagesato Y, Mizushima H, Koshikawa N, Kitamura H, Hayashi H, Ogawa N, Tsukuda M, Miyazaki K (2001) Sole expression of laminin gamma 2 chain in 20 invading tumor cells and its association with stromal fibrosis in lung adenocarcinomas. Jpn J Cancer Res 92:184–192PubMedGoogle Scholar
  26. Katayama M, Sekiguchi K (2004) Laminin-5 in epithelial tumour invasion. J Mol Histol 35:277–286PubMedCrossRefGoogle Scholar
  27. Kato K, Hara A, Kuno T, Kitaori N, Huilan Z, Mori H, Toida M, Shibata T (2005) Matrix metalloproteinases 2 and 9 in oral squamous cell carcinomas: manifestation and localization of their activity. J Cancer Res Clin Oncol 131:340–346PubMedCrossRefGoogle Scholar
  28. Kawano K, Yanagisawa S (2005) Predictive value of laminin-5 and membrane type 1-matrix metalloproteinase expression for cervical lymph node metastasis in T1 and T2 squamous cell carcinomas of the tongue and floor of the mouth. Head Neck 28:525–533CrossRefGoogle Scholar
  29. Korang K, Christiano AM, Uitto J, Mauviel A (1995) Differential cytokine modulation of the genes LAMA3, LAMB3, and LAMC2, encoding the constitutive polypeptides, alpha 3, beta 3, and gamma 2, of human laminin 5 in epidermal keratinocytes. FEBS Lett 368:556–558PubMedCrossRefGoogle Scholar
  30. Koshikawa N, Minegishi T, Sharabi A, Quaranta V, Seiki M (2005) Membranetype matrix metalloproteinase-1 (MT1-MMP) is a processing enzyme for human laminin gamma 2 chain. J Biol Chem 280:88–93PubMedGoogle Scholar
  31. Koshikawa N, Moriyama K, Takamura H, Mizushima H, Nagashima Y, Yanoma S, Miyazaki K (1999) Overexpression of laminin gamma2 chain monomer in invading gastric carcinoma cells. Cancer Res 59:5596–5601PubMedGoogle Scholar
  32. Kosmehl H, Berndt A, Katenkamp D (1996) Molecular variants of fibronectin and laminin: structure, physiological occurrence and histopathological aspects. Virchows Arch 429:311–322PubMedCrossRefGoogle Scholar
  33. Kosmehl H, Berndt A, Strassburger S, Borsi L, Rousselle P, Mandel U, Hyckel P, Zardi L, Katenkamp D (1999) Distribution of laminin and fibronectin isoforms in oral mucosa and oral squamous cell carcinoma. Br J Cancer 81:1071–1079PubMedCrossRefGoogle Scholar
  34. Kurahara S, Shinohara M, Ikebe T, Nakamura S, Beppu M, Hiraki A, Takeuchi H, Shirasuna K (1999) Expression of MMPs, MT-MMP, and TIMPs in squamous cell carcinoma of the oral cavity: correlations with tumor invasion and metastasis. Head Neck 21:627–638PubMedCrossRefGoogle Scholar
  35. Lee S, Solow-Cordero DE, Kessler E, Takahara K, Greenspan DS (1997) Transforming growth factor-beta regulationof bone morphogenetic protein-1/procollagen C-proteinase and related proteins in fibrogenic cells and keratinocytes. J Biol Chem 272:19059–19066PubMedCrossRefGoogle Scholar
  36. Lewis MP, Lygoe KA, Nystrom ML, Anderson WP, Speight PM, Marshall JF, Thomas GJ (2004) Tumour-derived TGF-beta1 modulates myofibroblast differentiation and promotes HGF/SF-dependent invasion of squamous carcinoma cells. Br J Cancer 90:822–832PubMedCrossRefGoogle Scholar
  37. Libby RT, Champliaud MF, Claudepierre T, Xu Y, Gibbons EP, Koch M, Burgeson RE, Hunter DD, Brunken WJ (2000) Laminin expression in adult and developing retinae: evidence of two novel CNS laminins. J Neurosci 20:6517–6528PubMedGoogle Scholar
  38. Manda R, Kohno T, Niki T, Yamada T, Takenoshita S, Kuwano H, Yokota J (2000) Differential expression of the LAMB3 and LAMC2 genes between small cell and non-small cell lung carcinomas. Biochem Biophys Res Commun 275:440–445PubMedCrossRefGoogle Scholar
  39. Manders EMM, Verbeek FJ, Aten JA (1992) Measurement of co-localization of objects in dual-colour confocal images. J Micros 169:375–382Google Scholar
  40. Masunaga T, Shimizu H, Ishiko A, Tomita Y, Aberdam D, Ortonne JP, Nishikawa T (1996) Localization of laminin-5 in the epidermal basement membrane. J Histochem Cytochem 44:1223–1230PubMedGoogle Scholar
  41. Meneguzzi G, Marinkovich MP, Aberdam D, Pisani A, Burgeson R, Ortonne JP (1992) Kalinin is abnormally expressed in epithelial basement membranes of Herlitz’s junctional epidermolysis bullosa patients. Exp Dermatol 1:221–229PubMedCrossRefGoogle Scholar
  42. Miyazaki K, Kikkawa Y, Nakamura A, Yasumitsu H, Umeda M (1993) A large cell-adhesive scatter factor secreted by human gastric carcinoma cells. Proc Natl Acad Sci USA 90:11767–11771PubMedCrossRefGoogle Scholar
  43. Mizushima H, Koshikawa N, Moriyama K, Takamura H, Nagashima Y, Hirahara F, Miyazaki K (1998) Wide distribution of laminin-5 gamma 2 chain in basement membranes of various human tissues. Horm Res 50:7–14PubMedCrossRefGoogle Scholar
  44. Mygind H, Nielsen B, Moe D, Clausen H, Dabelsteen E, Clausen PP (1988) Antikeratin antibodies in routine diagnostic pathology. A comparison of 10 different commercial antikeratins. APMIS 96:1009–1022PubMedCrossRefGoogle Scholar
  45. Myoung H, Kim MJ, Hong SD, Lee JI, Lim CY, Hong SP (2002) Expression of membrane type I-matrix metalloproteinase in oral squamous cell carcinoma. Cancer Lett 185:201–209PubMedCrossRefGoogle Scholar
  46. Nakashima Y, Kariya Y, Yasuda C, Miyazaki K (2005) Regulation of cell adhesion and type VII collagen binding by the beta3 chain short arm of laminin-5: effect of its proteolytic cleavage. J Biochem (Tokyo) 138:539–552Google Scholar
  47. Nikkari ST, Hoyhtya M, Isola J, Nikkari T (1996) Macrophages contain 92-kd gelatinase (MMP-9) at the site of degenerated internal elastic lamina in temporal arteritis. Am J Pathol 149: 1427–1433PubMedGoogle Scholar
  48. Olsen J, Lefebvre O, Fritsch C, Troelsen JT, Orian-Rousseau V, Kedinger M, Simon-Assmann P (2000) Involvement of activator protein 1 complexes in the epithelium-specific activation of the laminin gamma2-chain gene promoter by hepatocyte growth factor (scatter factor). Biochem J 347:407–417PubMedCrossRefGoogle Scholar
  49. Ono Y, Nakanishi Y, Ino Y, Niki T, Yamada T, Yoshimura K, Saikawa M, Nakajima T, Hirohashi S (1999) Clinocopathologic significance of laminin-5 gamma2 chain expression in squamous cell carcinoma of the tongue: immunohistochemical analysis of 67 lesions. Cancer 85:2315–2321PubMedCrossRefGoogle Scholar
  50. Osborn M, Debus E, Weber K (1984) Monoclonal antibodies specific for vimentin. Eur J Cell Biol 34:137–143PubMedGoogle Scholar
  51. Peinado H, Quintanilla M, Cano A (2003) Transforming growth factor beta-1 induces snail transcription factor in epithelial cell lines: mechanisms for epithelial mesenchymal transitions. J Biol Chem 278:21113–21123PubMedCrossRefGoogle Scholar
  52. Prime SS, Davies M, Pring M, Paterson IC (2004) The role of TGF-beta in epithelial malignancy and its relevance to the pathogenesis of oral cancer (part II). Crit Rev Oral Biol Med 15:337–347PubMedCrossRefGoogle Scholar
  53. Pyke C, Romer J, Kallunki P, Lund LR, Ralfkiaer E, Dano K, Tryggvason K (1994) The gamma 2 chain of kalinin/laminin 5 is preferentially expressed in invading malignant cells in human cancers. Am J Pathol 145:782–791PubMedGoogle Scholar
  54. Pyke C, Salo S, Ralfkiaer E, Romer J, Dano K, Tryggvason K (1995) Laminin- 5 is a marker of invading cancer cells in some human carcinomas and is coexpressed with the receptor for urokinase plasminogen activator in budding cancer cells in colon adenocarcinomas. Cancer Res 55:4132–4139PubMedGoogle Scholar
  55. Richter P, Böhmer FD, Hindermann W, Borsi L, Hyckel P, Schleier P, Katenkamp D, Kosmehl H, Berndt A (2005) Analysis of activated EGFR signaling pathways and their relation to laminin-5 gamma2 chain expression in oral squamous cell carcinoma (OSCC). Histochem Cell Biol 124:151–160PubMedCrossRefGoogle Scholar
  56. Rousselle P, Lunstrum GP, Keene DR, Burgeson RE (1991) Kalinin: an epithelium-specific basement membrane adhesion molecule that is a component of anchoring filaments. J Cell Biol 114:567–576PubMedCrossRefGoogle Scholar
  57. Ryan MC, Tizard R, VanDevanter DR, Carter WG (1994) Cloning of the LamA3 gene encoding the alpha 3 chain of the adhesive ligand epiligrin. Expression in wound repair. J Biol Chem 269:22779–22787PubMedGoogle Scholar
  58. Serini G, Bochaton-Piallat ML, Ropraz P, Geinoz A, Borsi L, Zardi L, Gabbiani G (1998) The fibronectin domain ED-A is crucial for myofibroblastic phenotype induction by transforming growth factor-beta1. J Cell Biol 142:873–881PubMedCrossRefGoogle Scholar
  59. Shin SS, Liu C, Chang EY, Carlson CS, Di Cesare PE (2004) Expression of bone morphogenetic proteins by Dupuytren’s fibroblasts. J Hand Surg 29:809–814CrossRefGoogle Scholar
  60. Sordat I, Rousselle P, Chaubert P, Petermann O, Aberdam D, Bosman FT, Sordat B, (2000) Tumor cell budding and laminin-5 expression in colorectal carcinoma can be modulated by the tissue micro-environment. Int J Cancer 88:708–717PubMedCrossRefGoogle Scholar
  61. Stawowy P, Margeta C, Kallisch H, Seidah NG, Chretien M, Fleck E, Graf K (2004) Regulation of matrix metalloproteinase MT1-MMP/MMP-2 in cardiac fibroblasts by TGF-beta1 involves furin-convertase. Cardiovasc Res 63:87–97PubMedCrossRefGoogle Scholar
  62. Tani T, Karttunen T, Kiviluoto T, Kivilaakso E, Burgeson RE, Sipponen P, Virtanen I (1996) Alpha 6 beta 4 integrin and newly deposited laminin-1 and laminin-5 form the adhesion mechanism of gastric carcinoma. Continuous expression of laminins but not that of collagen VII is preserved in invasive parts of the carcinomas: implications for acquisition of the invading phenotype. Am J Pathol 149:781–793PubMedGoogle Scholar
  63. Tani T, Lumme A, Linnala A, Kivilaakso E, Kiviluoto T, Burgeson RE, Kangas L, Leivo I, Virtanen I (1997) Pancreatic carcinomas deposit laminin-5, preferably adhere to laminin-5, and migrate on the newly deposited basement membrane. Am J Pathol 151:1289–1302PubMedGoogle Scholar
  64. Tsubota Y, Yasuda C, Kariya Y, Ogawa T, Hirosaki T, Mizushima H, Miyazaki K (2005) Regulation of biological activity and matrix assembly of laminin-5 by COOH-terminal, LG4–5 domain of alpha3 chain. J Biol Chem 280:14370–14377PubMedCrossRefGoogle Scholar
  65. Uraguchi M, Morikawa M, Shirakawa M, Sanada K, Imai K (2003) Activation of WNT family expression and signalling in squamous cell carcinomas of the oral cavity. J Dent Res 83:327–332Google Scholar
  66. Vailly J, Verrando P, Champliaud MF, Gerecke D, Wagman DW, Baudoin C, Aberdam D, Burgeson R, Bauer E, Ortonne JP (1994) The 100-kDa chain of nicein/kalinin is a laminin B2 chain variant. Eur J Biochem 219:209–218PubMedCrossRefGoogle Scholar
  67. Zhang W, Matrisian LM, Holmbeck K, Vick CC, Rosenthal EL (2006) Fibroblast-derived MTI-MMP promotes tumor progression in vitro and in vivo. BMC Cancer 6:52PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2007

Authors and Affiliations

  • Marcus Franz
    • 1
  • Petra Richter
    • 1
  • Christiane Geyer
    • 1
  • Torsten Hansen
    • 2
  • Lorena Dominguez Acuña
    • 3
  • Peter Hyckel
    • 4
  • Frank D. Böhmer
    • 5
  • Hartwig Kosmehl
    • 6
  • Alexander Berndt
    • 1
    Email author
  1. 1.Institute of PathologyFriedrich Schiller UniversityJenaGermany
  2. 2.Institute of PathologyJohannes Gutenberg UniversityMainzGermany
  3. 3.Instituto de Recursos Naturales y AgrobiologiaSalamancaSpain
  4. 4.Clinic of Maxillofacial SurgeryFriedrich Schiller UniversityJenaGermany
  5. 5.Institute of Molecular Cell BiologyFriedrich Schiller UniversityJenaGermany
  6. 6.Institute of PathologyHELIOS-KlinikumErfurtGermany

Personalised recommendations