Journal of Molecular Histology

, Volume 37, Issue 8–9, pp 327–332

High expression of APOBEC3G in patients infected with hepatitis C virus

  • Yoshihiro Komohara
  • Hirohisa Yano
  • Shigeki Shichijo
  • Kunitada Shimotohno
  • Kyogo Itoh
  • Akira Yamada
Original Paper


APOBEC3G (an apolipoprotein B mRNA-editing enzyme, catalytic polypeptide-like 3G; also known as CEM15), a member of the APOBEC family, which possesses cytidine deaminase activity that causes C/G to T/A transition mutations in virus genomes such as human immunodeficiency virus 1 and hepatitis B virus, is reported to play an important role in host-defense mechanisms. However, APOBEC3G expression in patients infected with chronic hepatitis C virus (HCV), of which there are currently more than 170 million worldwide, has not yet been well studied. We investigated this issue herein, and demonstrated an increased expression of APOBEC3G in both hepatocytes and lymphocytes of chronic hepatitis patients infected with HCV. Transfection of the NS5A gene, but not any other non-structural protein genes of HCV tested, to the hepatocellular carcinoma cell line enhanced APOBEC3G expression. Incubation of the cells with interferon also resulted in the augmentation. These results may provide new insight into the pathogenesis of chronic HCV infection.


APOBEC3G HCV Hepatocytes NS5A Interferon 


  1. Chiu YL, Soros VB, Kreisberg JF, Stopak K, Yonemoto W, Greene WC (2005) Cellular APOBEC3G restricts HIV-1 infection in resting CD4+ T cells. Nature 435:108–114PubMedCrossRefGoogle Scholar
  2. Choi SH, Hwang SB (2006) Modulation of TGF-β signal transduction pathway by hepatitis C virus nonstructural 5A protein. J Biol Chem 281:7468–7478PubMedCrossRefGoogle Scholar
  3. Dumoulin FL, Bach A, Leifeild L, El-Bakri M, Fischer HP, Sauerbruch T, Spengler U (1997) Semiquantitative analysis of intrahepatic cytokine mRNAs in chronic hepatitis C. J Infect Dis 175:681–685PubMedGoogle Scholar
  4. Ghosh AK, Steele R, Meyer K, Ray R, Ray RB (1999) Hepatitis C virus NS5A protein modulates cell cycle regulatory genes and promotes cell growth. J Gen Virol 80:1179–1183PubMedGoogle Scholar
  5. Girard S, Shalhoub P, Lescure P, Sabile A, Misek DE, Hanash S, Brechot C, Beretta L (2002) An altered cellular response to interferon and up-regulation of interleukin-8 induced by the hepatitis C viral protein NS5A uncovered by microarray analysis. Virology 295:272–283PubMedCrossRefGoogle Scholar
  6. Girard S, Vossman E, Misek DE, Podevin P, Hanash S, Brechot C, Beretta L (2004) Hepatitis C virus NS5A-regulated gene expression and signaling revealed via microarray and comparative promoter analyses. Hepatology 40:708–718PubMedCrossRefGoogle Scholar
  7. Haramaki M, Yano H, Iemura A, Momosaki S, Ogasawara S, Inoue M, Yamaguchi R, Kusaba A, Utsunomiya I, Kojiro M (1997) A new human hepatocellular carcinoma cell line (HAK-2) forms various structures in collagen gel matrices. Hum Cell 10:183–192PubMedGoogle Scholar
  8. Harris RS, Liddament MT (2004) Retroviral restriction by APOBEC proteins. Nat Rev Immunol 4:868–877PubMedCrossRefGoogle Scholar
  9. Hoffman RA, Kung PC, Hansen WP, Goldstein G (1980) Simple and rapid measurement of human T lymphocytes and their subclasses in peripheral blood. Proc Natl Acad Sci USA 77:4914–4917PubMedCrossRefGoogle Scholar
  10. Jin X, Brooks A, Chen H, Bennett R, Reichman R, Smith H (2005) APOBEC3G/CEM15 (hA3G) mRNA levels associate inversely with human immunodeficiency virus viremia. J Virol 79:11513–11516PubMedCrossRefGoogle Scholar
  11. Lan KH, Sheu ML, Hwang S, Yen SH, Chen SY, Wu JC, Wang YJ, Kato N, Omata M, Chang FY, Lee SD (2002) HCV NS5A interacts with p53 and inhibits p53-mediated apoptosis. Oncogene 21:4801–4811PubMedCrossRefGoogle Scholar
  12. Lau PP, Zhu HJ, Baldini A, Charnsangavej C, Chan L (1994) Dimeric structure of a human apolipoprotein B mRNA editing protein and cloning and chromosomal localization of its gene. Proc Natl Acad Sci USA 91:8522–8526PubMedCrossRefGoogle Scholar
  13. Liddament MT, Brown WL, Schumacher AJ, Harris RS (2004) APOBEC3F properties and hypermutation preferences indicate activity against HIV-1 in vivo. Curr Biol 14:1385–1391PubMedCrossRefGoogle Scholar
  14. Mangeat B, Turelli P, Caron G, Friedli M, Perrin L, Trono D (2003) Broad antiviral defence by human APOBEC3G through lethal editing of nascent reverse transcripts. Nature 424:99–103PubMedCrossRefGoogle Scholar
  15. Matys V, Fricke E, Geffers R, Gossling E, Haubrock M, Hehl R, Hornischer K, Karas D, Kel AE, Kel-Margoulis OV, Kloos DU, Land S, Lewicki-Potapov B, Michael H, Munch R, Reuter I, Rotert S, Saxel H, Scheer M, Thiele S, Wingender E (2003) TRANSFAC: transcriptional regulation, from patterns to profiles. Nucl Acids Res 31:374–378PubMedCrossRefGoogle Scholar
  16. Muramatsu M, Kinoshita K, Fagarasan S, Yamada S, Shinkai Y, Honjo T (2000) Class switch recombination and hypermutation require activation-induced cytidine deaminase (AID), a potential RNA editing enzyme. Cell 102:553–563PubMedCrossRefGoogle Scholar
  17. Navarro F, Landau NR (2004) Recent insights into HIV-1 Vuf. Curr Opin Immunol 16:477–482PubMedCrossRefGoogle Scholar
  18. Noguchi C, Ishino H, Tsuge M, Fujimoto Y, Imamura M, Takahashi S, Chayama K (2005) G to A hypermutation of hepatitis B virus. Hepatology 41:626–633PubMedCrossRefGoogle Scholar
  19. Rosler C, Kock J, Kann M, Malim MH, Blum HE, Baumert TF, von Weizsacker F (2005) APOBEC-mediated interference with hepadnavirus production. Hepatology 42:301–309PubMedCrossRefGoogle Scholar
  20. Satoh S, Hirota M, Noguchi T, Hijikata M, Handa H, Shimotohno K (2000) Cleavage of hepatitis C virus nonstructural protein 5A by a caspase-like protease(s) in mammalian cells. Virology 270:476–487PubMedCrossRefGoogle Scholar
  21. Sawyer SL, Emerman M, Malik HS (2004) Ancient adaptive evolution of the primate antiviral DNA-editing enzyme APOBEC3G. PLoS Biol 2:1278–1285CrossRefGoogle Scholar
  22. Tanaka Y, Marusawa H, Seno H, Matsumoto Y, Ueda Y, Kodama Y, Endo Y, Yamauchi J, Matsumoto T, Takaori-Kondo A, Ikai I, Chiba T (2006) Anti-viral protein APOBEC3G is induced by interferon-α stimulation in human hepatocytes. Biochem Biophys Res Commun 341:314–319PubMedCrossRefGoogle Scholar
  23. Taylor MW, Grosse WM, Schaley JE, Sanda C, Wu X, Chien SC, Smith F, Wu TG, Stephens M, Ferris MW, Mcclintick JN, Jerome RE, Edenberg HJ (2004) Global effect of PEG-IFN-a and ribavirin on gene expression in PBMC in vitro. J Interferon Cytokine Res 24:107–118PubMedCrossRefGoogle Scholar
  24. Waris G, Turkson J, Hassanein T, Siddiqui A (2005) Hepatitis C virus (HCV) constitutively activates STAT-3 via oxidative stress: role of STAT-3 in HCV replication. J Virol 79:1569–1580PubMedCrossRefGoogle Scholar
  25. Zhang H, Yang B, Pomerantz RJ, Zhang C, Arunachalam SC, Gao L (2003) The cytidine deaminase CEM15 induces hypermutation in newly synthesized HIV-1 DNA. Nature 424:94–98PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • Yoshihiro Komohara
    • 1
    • 2
  • Hirohisa Yano
    • 3
  • Shigeki Shichijo
    • 1
  • Kunitada Shimotohno
    • 4
  • Kyogo Itoh
    • 1
  • Akira Yamada
    • 1
    • 2
  1. 1.Department of ImmunologyKurume University School of MedicineKurumeJapan
  2. 2.Cancer Vaccine Development DivisionResearch Center for Innovative Cancer Therapy, and Center of the 21st Century Center of Excellence Program for Medical Science, Kurume UniversityKurume, FukuokaJapan
  3. 3.Department of PathologyKurume University School of MedicineKurumeJapan
  4. 4.Department of Viral OncologyInstitute for Virus Research, Kyoto UniversityKyotoJapan

Personalised recommendations