Journal of Molecular Histology

, Volume 37, Issue 5–7, pp 293–299 | Cite as

Importin KPNA2, NBS1, DNA Repair and Tumorigenesis

  • Shu-Chun Teng
  • Kou-Juey Wu
  • Shun-Fu Tseng
  • Chui-Wei Wong
  • Li Kao
Original Paper

Abstract

During the past 20 years, the MRE11–RAD50–NBS1 complex has become an increasingly important focus in basic and clinical cancer research. One main conceptual step forward was made with the discovery of NBS1 and the understanding of its critical pathophysiological role in Nijmegen breakage syndrome. Major efforts were carried out to define the role in DNA repair of this complex. Recently, basic research has continuously extended our understanding of the complexity of the NBS1 complex. MRE11–RAD50–NBS1 complex can no longer be viewed as having a single role in DNA damage repair since it also serves as a sensor and a mediator in cell cycle checkpoint signaling. Meanwhile, studies have challenged the concept that NBS1 only functions as a tumor suppressor in preserving genome integrity in the nucleus. It may also provide an oncogenic role in the cytoplasm which is associated with the PI3-kinase/AKT-activation pathway. Consistent with this aspect, a growing body of clinical evidence suggests that NBS1 contains a deleterious character that depends on its subcellular localization. This review focuses on recent experimental evidences demonstrating how NBS1 is translocated into the nucleus by an importin KPNA2 which mediates NBS1 subcellular localization and the functions of the NBS1 complex in tumorigenesis.

Keywords

Importin KPNA2 NBS1 DNA repair Cancer Tumorigenesis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

We thank Drs. P. Suresh and M.-K. Chern for their critical comments on the manuscript. We did not cite all of the excellent work that has been done in this field. We apologize to my colleagues who may feel that their work is underevaluated. This work was supported by National Health Research Institutes NHRI-EX94-9329SI (K.J.W.), NHRI-EX94-9328SI (S.C.T.), National Research Program for Genomic Medicine-Department of Health DOH94-TD-G-111-012 (K.J.W.), and National Science Council NSC 93-2320-B-002-38 (S.C.T.), NSC-94-2311-B-010-011 (K.J.W.).

References

  1. Bellacosa A, Chan TO, Ahmed NN, Datta K, Malstrom S, Stokoe D, McCormick F, Feng J, Tsichlis P (1998) Akt activation by growth factors is a multiple-step process: the role of the PH domain. Oncogene 17(3):313--25PubMedCrossRefGoogle Scholar
  2. Cantley LC (2002) The phosphoinositide 3-kinase pathway. Science 296(5573):1655--657PubMedCrossRefGoogle Scholar
  3. Carney JP, Maser RS, Olivares H, Davis EM, Le Beau M, Yates JR 3rd, Hays L, Morgan WF, Petrini JH (1998) The hMre11/hRad50 protein complex and Nijmegen breakage syndrome: linkage of double-strand break repair to the cellular DNA damage response. Cell 93(3):477--86PubMedCrossRefGoogle Scholar
  4. Cerosaletti KM, Concannon P (2003) Nibrin forkhead-associated domain and breast cancer C-terminal domain are both required for nuclear focus formation and phosphorylation. J Biol Chem 278(24):21944--1951PubMedCrossRefGoogle Scholar
  5. Chen YC, Su YN, Chou PC, Chiang WC, Chang MC, Wang LS, Teng SC, Wu KJ (2005) Overexpression of NBS1 contributes to transformation through the activation of phosphatidylinositol 3-kinase/Akt. J Biol Chem 280(37):32505--2511PubMedCrossRefGoogle Scholar
  6. Chiang YC, Teng SC, Su YN, Hsieh FJ, Wu KJ (2003) c-Myc directly regulates the transcription of the NBS1 gene involved in DNA double-strand break repair. J Biol Chem 278(21):19286--9291PubMedCrossRefGoogle Scholar
  7. Chook YM, Blobel G (2001) Karyopherins and nuclear import. Curr Opin Struct Biol 11(6):703--15PubMedCrossRefGoogle Scholar
  8. Dang CV (1999) c-Myc target genes involved in cell growth, apoptosis, and metabolism. Mol Cell Biol 19(1):1--1PubMedGoogle Scholar
  9. Davis LI (1995) The nuclear pore complex. Annu Rev Biochem 64:865--96PubMedCrossRefGoogle Scholar
  10. Digweed M, Sperling K (2004) Nijmegen breakage syndrome: clinical manifestation of defective response to DNA double-strand breaks. DNA Repair (Amst) 3(8):1207--217CrossRefGoogle Scholar
  11. Durocher D, Taylor IA, Sarbassova D, Haire LF, Westcott SL, Jackson SP, Smerdon SJ, Yaffe MB (2000) The molecular basis of FHA domain:phosphopeptide binding specificity and implications for phospho-dependent signaling mechanisms. Mol Cell 6(5):1169--182PubMedCrossRefGoogle Scholar
  12. Gatei M, Young D, Cerosaletti KM, Desai-Mehta A, Spring K, Kozlov S, Lavin MF, Gatti RA, Concannon P, Khanna K (2000) ATM-dependent phosphorylation of nibrin in response to radiation exposure. Nat Genet 25(1):115--19PubMedCrossRefGoogle Scholar
  13. Gorlich D, Henklein P, Laskey RA, Hartmann E (1996) A 41 amino acid motif in importin-alpha confers binding to importin-beta and hence transit into the nucleus. EMBO J5(8):1810--817PubMedGoogle Scholar
  14. Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100(1):57--0PubMedCrossRefGoogle Scholar
  15. Harel A, Forbes DJ (2004) Importin beta: conducting a much larger cellular symphony. Mol Cell 16(3):319--30PubMedGoogle Scholar
  16. Iijima K, Komatsu K, Matsuura S, Tauchi H (2004) The Nijmegen breakage syndrome gene and its role in genome stability. Chromosoma 113(2):53--1PubMedCrossRefGoogle Scholar
  17. Jakel S, Gorlich D (1998) Importin beta, transportin, RanBP5 and RanBP7 mediate nuclear import of ribosomal proteins in mammalian cells. EMBO J 17(15):4491--502PubMedCrossRefGoogle Scholar
  18. Kotera I, Sekimoto T, Miyamoto Y, Saiwaki T, Nagoshi E, Sakagami H, Kondo H, Yoneda Y (2005) Importin alpha transports CaMKIV to the nucleus without utilizing importin beta. EMBO J 24(5):942--51PubMedCrossRefGoogle Scholar
  19. Lai MC, Teh BH, Tarn WY (1999) A human papillomavirus E2 transcriptional activator. The interactions with cellular splicing factors and potential function in pre-mRNA processing. J Biol Chem 274(17):11832--1841PubMedCrossRefGoogle Scholar
  20. Lee JH, Paull TT (2005) ATM activation by DNA double-strand breaks through the Mre11–Rad50–Nbs1 complex. Science 308(5721):551--54PubMedCrossRefGoogle Scholar
  21. Lim DS, Kim ST, Xu B, Maser RS, Lin J, Petrini JH, Kastan MB (2000) ATM phosphorylates p95/nbs1 in an S-phase checkpoint pathway. Nature 404(6778):613--17PubMedCrossRefGoogle Scholar
  22. Lukas C, Falck J, Bartkova J, Bartek J, Lukas J (2003) Distinct spatiotemporal dynamics of mammalian checkpoint regulators induced by DNA damage. Nat Cell Biol 5(3):255--60PubMedCrossRefGoogle Scholar
  23. Luo J, Manning BD, Cantley LC (2003) Targeting the PI3K-Akt pathway in human cancer: rationale and promise. Cancer Cell 4(4):257--62PubMedCrossRefGoogle Scholar
  24. Macara IG (2001) Transport into and out of the nucleus. Microbiol Mol Biol Rev 65(4):570--94, table of contentsPubMedCrossRefGoogle Scholar
  25. Matsuura S, Tauchi H, Nakamura A, Kondo N, Sakamoto S, Endo S, Smeets D, Solder B, Belohradsky BH, Der Kaloustian VM, Oshimura M, Isomura M, Nakamura Y, Komatsu K (1998) Positional cloning of the gene for Nijmegen breakage syndrome. Nat Genet 19(2):179--81PubMedCrossRefGoogle Scholar
  26. Mattaj IW, Englmeier L (1998) Nucleocytoplasmic transport: the soluble phase. Annu Rev Biochem 67:265--06PubMedCrossRefGoogle Scholar
  27. Moroianu J, Blobel G, Radu A (1996) The binding site of karyopherin alpha for karyopherin beta overlaps with a nuclear localization sequence. Proc Natl Acad Sci USA 93(13):6572--576PubMedCrossRefGoogle Scholar
  28. Nishinaka Y, Masutani H, Oka S, Matsuo Y, Yamaguchi Y, Nishio K, Ishii Y, Yodoi J (2004) Importin alpha1 (Rch1) mediates nuclear translocation of thioredoxin-binding protein-2/vitamin D(3)-up-regulated protein 1. J Biol Chem 279(36):37559--7565PubMedCrossRefGoogle Scholar
  29. Paull TT, Gellert M (1999) Nbs1 potentiates ATP-driven DNA unwinding and endonuclease cleavage by the Mre11/Rad50 complex. Genes Dev 13(10):1276--288PubMedGoogle Scholar
  30. Pelengaris S, Khan M, Evan G (2002) c-MYC: more than just a matter of life and death. Nat Rev Cancer 2(10):764--76PubMedCrossRefGoogle Scholar
  31. Ranganathan V, Heine WF, Ciccone DN, Rudolph KL, Wu X, Chang S, Hai H, Ahearn IM, Livingston DM, Resnick I, Rosen F, Seemanova E, Jarolim P, DePinho RA, Weaver DT (2001) Rescue of a telomere length defect of Nijmegen breakage syndrome cells requires NBS and telomerase catalytic subunit. Curr Biol 11(12):962--66PubMedCrossRefGoogle Scholar
  32. Renan MJ (1993) How many mutations are required for tumorigenesis? Implications from human cancer data. Mol Carcinog 7(3):139--46PubMedGoogle Scholar
  33. Saar K, Chrzanowska KH, Stumm M, Jung M, Nurnberg G, Wienker TF, Seemanova E, Wegner RD, Reis A, Sperling K (1997) The gene for the ataxia-telangiectasia variant, Nijmegen breakage syndrome, maps to a 1-cM interval on chromosome 8q21. Am J Hum Genet 60(3):605--10PubMedGoogle Scholar
  34. Shiloh Y (1997) Ataxia-telangiectasia and the Nijmegen breakage syndrome: related disorders but genes apart. Annu Rev Genet 31:635--62PubMedCrossRefGoogle Scholar
  35. Stracker TH, Theunissen JW, Morales M, Petrini JH (2004) The Mre11 complex and the metabolism of chromosome breaks: the importance of communicating and holding things together. DNA Repair (Amst) 3(8):845--54CrossRefGoogle Scholar
  36. Tauchi H (2000) Positional cloning and functional analysis of the gene responsible for Nijmegen breakage syndrome, NBS1. J Radiat Res (Tokyo) 41(1):9--7CrossRefGoogle Scholar
  37. Tauchi H, Kobayashi J, Morishima K, van Gent DC, Shiraishi T, Verkaik NS, vanHeems D, Ito E, Nakamura A, Sonoda E, Takata M, Takeda S, Matsuura S, Komatsu K (2002a) Nbs1 is essential for DNA repair by homologous recombination in higher vertebrate cells. Nature 420(6911):93--8CrossRefGoogle Scholar
  38. Tauchi H, Matsuura S, Kobayashi J, Sakamoto S, Komatsu K (2002b) Nijmegen breakage syndrome gene, NBS1, and molecular links to factors for genome stability. Oncogene 21(58):8967--980CrossRefGoogle Scholar
  39. Teng SC, Chang J, McCowan B, Zakian VA (2000) Telomerase-independent lengthening of yeast telomeres occurs by an abrupt Rad50p-dependent, Rif-inhibited recombinational process. Mol Cell 6(4):947--52PubMedCrossRefGoogle Scholar
  40. Testa JR, Bellacosa A (2001) AKT plays a central role in tumorigenesis. Proc Natl Acad Sci USA 98(20):10983--0985PubMedCrossRefGoogle Scholar
  41. Trujillo KM, Yuan SS, Lee EY, Sung P (1998) Nuclease activities in a complex of human recombination and DNA repair factors Rad50, Mre11, and p95. J Biol Chem 273(34):21447--1450PubMedCrossRefGoogle Scholar
  42. Tseng SF, Chang CY, Wu KJ, Teng SC (2005) Importin KPNA2 is required for proper nuclear localization and multiple functions of NBS1. J Biol Chem 280(47):39594--9600PubMedCrossRefGoogle Scholar
  43. Tsukamoto Y, Mitsuoka C, Terasawa M, Ogawa H, Ogawa T (2005) Xrs2p regulates Mre11p translocation to the nucleus and plays a role in telomere elongation and meiotic recombination. Mol Biol Cell 16(2):597--08PubMedCrossRefGoogle Scholar
  44. van der Burgt I, Chrzanowska KH, Smeets D, Weemaes C (1996) Nijmegen breakage syndrome. J Med Genet 33(2):153--56PubMedCrossRefGoogle Scholar
  45. Varon R, Vissinga C, Platzer M, Cerosaletti KM, Chrzanowska KH, Saar K, Beckmann G, Seemanova E, Cooper PR, Nowak NJ, Stumm M, Weemaes CM, Gatti RA, Wilson RK, Digweed M, Rosenthal A, Sperling K, Concannon P, Reis A (1998) Nibrin, a novel DNA double-strand break repair protein, is mutated in Nijmegen breakage syndrome. Cell 93(3):467--76PubMedCrossRefGoogle Scholar
  46. Vivanco I, Sawyers CL (2002) The phosphatidylinositol 3-Kinase AKT pathway in human cancer. Nat Rev Cancer 2(7):489--01PubMedCrossRefGoogle Scholar
  47. Weis K, Ryder U, Lamond AI (1996) The conserved amino-terminal domain of hSRP1 alpha is essential for nuclear protein import. EMBO J 15(8):1818--825PubMedGoogle Scholar
  48. Wu G, Lee WH, Chen PL (2000a) NBS1 and TRF1 colocalize at promyelocytic leukemia bodies during late S/G2 phases in immortalized telomerase-negative cells. Implication of NBS1 in alternative lengthening of telomeres. J Biol Chem 275(39):30618--0622CrossRefGoogle Scholar
  49. Wu X, Ranganathan V, Weisman DS, Heine WF, Ciccone DN, O’Neill TB, Crick KE, Pierce KA, Lane WS, Rathbun G, Livingston DM, Weaver DT (2000b) ATM phosphorylation of Nijmegen breakage syndrome protein is required in a DNA damage response. Nature 405(6785):477--82CrossRefGoogle Scholar
  50. Yang MH, Chiang WC, Chou TY, Chang SY, Chen PM, Teng SC, Wu KJ (2006) Increased NBS1 expression is a marker of aggressive head and neck cancer and overexpression of NBS1 contributes to transformation. Clin Cancer Res 12(2):507--15PubMedCrossRefGoogle Scholar
  51. Yoneda Y (2000) Nucleocytoplasmic protein traffic and its significance to cell function. Genes Cells 5(10):777--87PubMedCrossRefGoogle Scholar
  52. Zannini L, Lecis D, Lisanti S, Benetti R, Buscemi G, Schneider C, Delia D (2003) Karyopherin-alpha2 protein interacts with Chk2 and contributes to its nuclear import. J Biol Chem 278(43):42346--2351PubMedCrossRefGoogle Scholar
  53. Zhao S, Weng YC, Yuan SS, Lin YT, Hsu HC, Lin SC, Gerbino E, Song MH, Zdzienicka MZ, Gatti RA, Shay JW, Ziv Y, Shiloh Y, Lee EY (2000) Functional link between ataxia-telangiectasia and Nijmegen breakage syndrome gene products. Nature 405(6785):473--77PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2006

Authors and Affiliations

  • Shu-Chun Teng
    • 1
    • 2
  • Kou-Juey Wu
    • 3
  • Shun-Fu Tseng
    • 1
  • Chui-Wei Wong
    • 1
  • Li Kao
    • 1
  1. 1.Department of Microbiology, College of MedicineNational Taiwan UniversityTaipeiTaiwan
  2. 2.Institute of Internal MedicineNational Taiwan University HospitalTaipeiTaiwan
  3. 3.Institute of BiochemistryNational Yang-Ming UniversityTaipeiTaiwan

Personalised recommendations