Journal of Molecular Histology

, Volume 35, Issue 7, pp 707–714 | Cite as

Multi-scale modelling and the IUPS physiome project

  • Edmund J. Crampin
  • Nicolas P. Smith
  • Peter J. Hunter


We review the development of models of cellular and tissue function and in particular address issues of multi-scale modelling, including the transition from stochastic models to continuum models and the incorporation of cell and tissue structure. The heart is used as an example of linking models at the molecular level to cell, tissue and organ level function.


Molecular Level Stochastic Model Continuum Model Organ Level Tissue Structure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Berry H (2002)Monte Carlo simulations of enzyme reactions in two dimensions:Fractal kinetics and spatial segregation.Biophys J 83: 1891–1901.Google Scholar
  2. Cortassa S, Aon MA, Marban E, Winslow RL, O'Rourke B (2003) An integrated model of cardiac mitochondrial energy metabolism and calcium dynamics.Biophys J 84:2734–2755.Google Scholar
  3. Daniel TL, Trimble AC, Chase PB (1998)Compliant realignment of binding sites in muscle:transient behavior and mechanical tuning. Biophys J 74:1611–1621.Google Scholar
  4. DiFrancesco D, Noble D (1985)A model of cardiac electrical activity incorporating ionic pumps and concentration changes.Phil Trans R Soc Lond B 307:353–98.Google Scholar
  5. Duke T (1999)Cooperativity of myosin molecules through strain-dependent chemistry.Phil Trans R Soc Lond B 355:529–538.Google Scholar
  6. Eisenberg E, Hill TL, Chen Y-D (1980)Cross bridge model of muscle contraction:quantitative analysis.Biophys J 29:195–227.Google Scholar
  7. Ellis RJ, Minton AP (2003)Join the crowd.Nature 425 (6953): 27–28.Google Scholar
  8. Forcinito M, Epstein M, Herzog W (1997)Theoretical considerations on myo bril stiffness.Biophys J 72:1278–1286.Google Scholar
  9. Gillespie DT (1977)Exact stochastic simulation of coupled chemical reactions.J Phys Chem 81:2340–2361.Google Scholar
  10. Guccione JM, Motabarzadeh I, Zahalak GI (1998)A distribution-moment model of deactivation in cardiac muscle.J Biomech 31: 1069–1073.Google Scholar
  11. Hall D, Minton AP (2003)Macromolecular crowding:Qualitative and semiquantitative successes, quantitative challenges.Biochim Biophys Acta 1649:127–139.Google Scholar
  12. Hodgkin AL, Huxley AF (1952)A quantitative description of membrane current and its application to conduction and excitation in nerve.J Physiol 117:500–544.Google Scholar
  13. Hooks D, Tomlinson K, Marsden SG, LeGrice I, Smaill BH, Pullan AJ, Hunter PJ (2002)Cardiac microstructure:implications for electrical propagation and de brillation in the heart.Circ Res 91:331–338.Google Scholar
  14. Hunter PJ, McCulloch AD, ter Keurs HE (1998)Modelling the mechanical properties of ardiac muscle.Prog Biophys Mol Biol 69 (2–3):289–331.Google Scholar
  15. Hunter PJ, Robbins P, Noble D (2002)The IUPS Human Physiome Project.Eur J Physiol 445:1–9.Google Scholar
  16. Hunter PJ, Borg TK (2003)Integration from proteins to organs:the Physiome Project.Nat Rev Mol Cell Biol 4:237–243.Google Scholar
  17. Hunter PJ, Pullan AJ, Smaill BH (2003)Modeling total heart function.Annu Rev Biomed Eng 5:147–177.Google Scholar
  18. Huxley AF (1957)Muscle structure and theories of contraction.Prog Biophys Biophys Chem 7:255–318.Google Scholar
  19. Jafri S, Rice J, Winslow R (1998)Cardiac Ca 2+ dynamics:the role of ryanodine receptor adaptation and sarcoplasmic reticulum load. Biophys J 74:1149–1168.Google Scholar
  20. Kawai M, Brandt PW (1980)Sinusoidal analysis:a high resolution method for correlating biochemical reactions with physiological processes in activated skeletal muscles of rabbit, frog and crayfish. J Musc Res Cell Motil 1:279–303.Google Scholar
  21. Kawai M, Saeki Y, Zhao Y (1993a)Crossbridge scheme and the kinetic constants of elementary steps deduced from chemically skinned papillary and trabecular muscles of the ferret.Circ Res 73:35–50.Google Scholar
  22. Kawai M, Zhao Y, Halvorson HR (1993b)Elementary steps of contraction probed by sinusoidal analysis technique in rabbit psoas bers.Adv Exp Med Biol 332:577–580.Google Scholar
  23. Kitano H (2002a)systems biology:a brief overview.Science 295: 1662–1664.Google Scholar
  24. Kitano H (2002b)Computational systems biology.Nature 420:206–210.Google Scholar
  25. Laurent TC (1971)Enzyme reactions in polymer media.Eur J Biochem 21:498–506.Google Scholar
  26. Le Grice IJ, Smaill BH, Chai LZ, Edgar SG, Gavin JB, Hunter PJ (1995)Laminar structure of the heart:ventricular myocyte arrangement and connective tissue architecture in the dog.Am J Physiol 269:H571-H582.Google Scholar
  27. Luo CH, Rudy Y (1991)A model of the ventricular cardiac action potential.Depolarization, repolarization, and their interaction. Circ Res 68 (6):1501–1526.Google Scholar
  28. Luo CH, Rudy Y (1994)A dynamic model of the cardiac ventricular action potential.I.Simulations of ionic currents and concentration changes.Circ Res 74 (6):1071–1096.Google Scholar
  29. Martyn DA, Chase PB, Regnier M, Gordon AM (2002)A simple model with myo lament compliance predicts activation-dependent crossbridge kinetics in skinned skeletal fibers.Biophys J 83:3425–3434.Google Scholar
  30. McAdams HH, Arkin AP (1997)Stochastic mechanisms in gene expression.Proc Natl Acad Sci USA 94:814–819.Google Scholar
  31. Medalia O, Weber I, Frangakis AS, Nicastro D, Gerisch G, Baumeister W (2002)Macromolecular architecture in eukaryotic cells visualized by cryoelectron tomography.Science 298 (5596):1209–1213.Google Scholar
  32. Michailova A, McCulloch A (2001)A Model study of ATP and ADP buffering, transport of Ca 2+ and Mg 2+, and regulation of ion pumps in ventricular myocyte.Biophys J 81 (2):614–629.Google Scholar
  33. Morton-Firth CJ, Bray D (1998)Predicting temporal fluctuations in an intracellular signalling pathway.J Theor Biol 192:117–128.Google Scholar
  34. Nickerson DP, Smith NP, Hunter PJ (2001)A model of cardiac cellular electromechanics.Phil Trans R Soc Lond A 359:1159–1172.Google Scholar
  35. Noble D, Varghese A, Kohl P, Noble P (1998)Improved guinea-pig ventricular cell model incorporating a diadic space, IKr and IKs, and length-and tension-dependent processes.Can J Cardiol 14 (1): 123–134.Google Scholar
  36. Noble D (2002a)Biological Computation.Encyclopedia of Life Sciences.New york: Macmillan, Nature Publishing Group.Google Scholar
  37. Noble D (2002b)The rise of computational biology.Nat Rev Mol Cell Biol 3:460–463.Google Scholar
  38. Piazzesi G, Lombardi V (1995)A cross-bridge model that is able to explain mechanical and energetic properties of shortening muscle. Biophys J 68:1966–1979.Google Scholar
  39. Saucerman JJ, Brunton LL, Michailova AP, McCulloch AD (2003) Modeling beta-adrenergic control of cardiac myocyte contractility in silico.J Biol Chem 278 (48):7997–8003Google Scholar
  40. Shimizu TS, Aksenov SV, Bray D (2003)A spatially extended stochastic model of the bacterial chemotaxis signalling pathway.J Mol Biol 329:291–309.Google Scholar
  41. Shimizu TS, Bray D (2001)Computational cell biology-the stochastic approach.In:Kitano H., ed.Foundations of Systems Biology. Cambridge, Mass: MIT Press.Google Scholar
  42. Smith DA (1998)A strain-dependent ratchet model for [phosphate ] and [ATP ]-dependent muscle contraction.J Muscle Res Cell Motility 19:189–211.Google Scholar
  43. Smith NP, Mulquiney PJ, Stevens C, Pullan AJ, Hunter PJ (2003) New developments in an anatomical framework for modelling cardiac ischemia.Int J Bifurc Chaos 13 (12):3717–3723.Google Scholar
  44. Smith NP (2003)From sarcomere to cell:an efficient algorithm for linking mathematical models of muscle contraction.Bull Math Biol 65:1141–1162.Google Scholar
  45. Zahalak GI (1981)A distribution-moment approximation for kinetic theories of muscular contraction.Math Biosci 55:89–114.Google Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • Edmund J. Crampin
    • 1
  • Nicolas P. Smith
    • 1
  • Peter J. Hunter
    • 1
  1. 1.Bioengineering InstituteThe University of AucklandAucklandNew Zealand

Personalised recommendations