Advertisement

Higher Education

, Volume 75, Issue 5, pp 839–854 | Cite as

The interplay between subjective abilities and subjective demands and its relationship with academic success. An application of the person–environment fit theory

  • Carla Bohndick
  • Tom Rosman
  • Susanne Kohlmeyer
  • Heike M. Buhl
Article

Abstract

In this study, we draw on person–environment fit theory to analyze whether academic success is best explained by individual abilities subjectively exceeding situational demands or by abilities matching the demands. Moreover, we disentangled effects of perceived abilities and subjective person–environment (P-E) fit on academic success. All in all, 693 teacher education students participated in an online questionnaire. Students were asked to rate general requirements of their academic programs (e.g., self-discipline) on a 5-point scale in terms of (1) their own abilities and (2) the perceived relevance for their studies. P-E fit was determined by difference scores between abilities and relevance ratings. Academic success was assessed by grades, perceived performance, and study satisfaction. Data were analyzed through structural equation modeling and suggest that academic success is best explained by a match between abilities and demands. Moreover, all three criteria for academic success were more strongly related to subjective fit than to subjective abilities.

Keywords

Academic success Person–environment fit theory Demands–abilities fit Higher education 

Notes

Compliance with ethical standards

Funding

The research initiative is funded by the German Federal Ministry of Education and Research within the Qualitätspakt Lehre.

References

  1. Bandura, A., Adams, N. E., Hardy, A. B., & Howells, G. N. (1980). Test of the generality of self-efficacy theory. Cognitive Therapy and Research, 4(1), 39–66.CrossRefGoogle Scholar
  2. Cable, D. M., & DeRue, D. S. (2002). The convergent and discriminant validity of subjective fit perceptions. Journal of Applied Psychology, 87(5), 875–884. doi: 10.1037/0021-9010.87.5.875.CrossRefGoogle Scholar
  3. Camara, W. J. (2005). Broadening criteria of college success and the impact of cognitive predictors. In W. J. Camara & E. W. Kimmel (Eds.), Choosing students. Higher education admissions tools for the 21st century (pp. 53–79). Mahwah: Lawrence Erlbaum Associates.Google Scholar
  4. Chemers, M. M., Hu, L.-T., & Garcia, B. F. (2001). Academic self-efficacy and first-year college student performance and adjustment. Journal of Educational Psychology, 93(1), 55–64. doi: 10.1037/0022-0663.93.1.55.CrossRefGoogle Scholar
  5. Core Team, R. (2013). R: a language and environment for statistical computing. Vienna: R Foundation for Statistical Computing http://www.R-project.org/.Google Scholar
  6. Dart, B. C. (1994). A goal-mediational model of personal and environmental influences on tertiary students' learning strategy use. Higher Education, 28, 453–470. doi: 10.1007/bf01383937.CrossRefGoogle Scholar
  7. Donche, V., & Gijbels, D. (2013). Understanding learning pattern development in higher education: a matter of time, context and measurement. Studies in Educational Evaluation, 39(1), 1–3. doi: 10.1016/j.stueduc.2012.11.002.CrossRefGoogle Scholar
  8. Edwards, J. (1991). Person-job fit: a conceptual integration, literature review, and methodological critique. In C. L. Cooper & I. T. Robertson (Eds.), International review of industrial and organizational psychology (Vol. 6, pp. 283–357). Chichester: Wiley.Google Scholar
  9. Edwards, J. R. (2007). Polynomial regression and response surface methodology. In C. L. Ostroff & T. Judge (Eds.), Perspectives on organizational fit (pp. 361–372). New York: Lawrence Erlbaum Associates.Google Scholar
  10. Edwards, J. R., & Shipp, A. J. (2007). The relationship between person-environment fit and outcomes: an integrative theoretical framework. In C. L. Ostroff & T. Judge (Eds.), Perspectives on organizational fit (pp. 209–258). New York: Lawrence Erlbaum Associates.Google Scholar
  11. Edwards, J. R., Caplan, R. D., & van Harrison, R. (1998). Person-environment fit theory. Conceptual foundations, empirical evidence and directions for future research. In C. L. Cooper (Ed.), Theories of organizational stress (pp. 28–67). Oxford: Oxford University Press.Google Scholar
  12. Edwards, J. R., Cable, D. M., Williamson, I. O., Schurer Lambert, L., & Shipp, A. J. (2006). The phenomenology of fit. Linking the person and environment to the subjective experience of person-environment fit. Journal of Applied Psychology, 91(4), 802–827. doi: 10.1037/0021-9010.91.4.802.CrossRefGoogle Scholar
  13. Etzel, J. M., & Nagy, G. (2016). Students’ perceptions of person-environment fit. Do fit perceptions predict academic success beyond personality traits? Journal of Career Assessment, 24(2), 270–288. doi: 10.1177/1069072715580325.CrossRefGoogle Scholar
  14. Feldman, K. A., Smart, J. C., & Ethington, C. A. (2004). What do college students have to lose? Exploring the outcomes of differences in person-environment fits. Journal of Higher Education, 75(5), 528–555. doi: 10.1353/jhe.2004.0029.CrossRefGoogle Scholar
  15. Georg, W. (2008). Individuelle und institutionelle Faktoren der Bereitschaft zum Studienabbruch – eine Mehrebenenanalyse mit Daten des Konstanzer Studierendensurveys [Individual and institutional factors for the readiness to drop out from higher education—a multi level analysis with data from the Konstanz Student Survey]. Zeitschrift für Soziologie der Erziehung und Sozialisation, 28(2), 191–206. doi: 10.1080/03075070802592730.Google Scholar
  16. Graham, J. W. (2009). Missing data analysis: making it work in the real world. Annual Review of Psychology, 60(1), 549–576. doi: 10.1146/annurev.psych.58.110405.085530.CrossRefGoogle Scholar
  17. Greven, S., & Kneib, T. (2010). On the behaviour of marginal and conditional AIC in linear mixed models. Biometrika, 97(4), 773–789. doi: 10.1093/biomet/asq042.CrossRefGoogle Scholar
  18. Harrison, R. (1978). Person-environment fit and job stress. In C. L. Cooper & R. Payne (Eds.), Stress at work. Chichester: Wiley.Google Scholar
  19. Heise, E., Westermann, R., Spies, K., & Stephan, H. (1997). Die Übereinstimmung von Fähigkeiten und Bedürfnissen der Studierenden verschiedener Fächer mit Anforderungen und Angeboten im Studium als Determinanten der Studienzufriedenheit [The fit of abilities and needs of students of different subjects with requirements and supplies as determinants of study satisfaction]. In U. Kittler & H. Metz-Göckel (Eds.) Pädagogische Psychologie in Erziehung und Organisation. Dokumentation des 2. Dortmunder Symposions für Pädagogische Psychologie 1996 [Educational psychology in education and organization. Documentation of the 2nd Symposium of Educational Psychology Dortmund 1996] (pp. 113–129). Essen: Die blaue Eule.Google Scholar
  20. Hell, B., Ptok, C., & Schuler, H. (2007). Methodik zur Ermittlung und Validierung von Anforderungen an Studierende (MEVAS): Anforderungsanalyse für das Fach Wirtschaftswissenschaften [Method for analyzing the demands of university studies (MEVAS)—requirement analysis for economics and business administration]. Zeitschrift für Arbeits-und Organisationspsychologie A&O, 51(2), 88–95.CrossRefGoogle Scholar
  21. Hell, B., Linsner, M., & Kurz, G. (2008). Prognose des Studienerfolgs [Prognosis of academic success]. In M. Rentschler (Ed.), Studieneignung und Studierendenauswahl. Untersuchungen und Erfahrungsberichte [Aptitude and student selection. Studies and field reports] (pp. 132–177). Shaker: Aachen.Google Scholar
  22. Jia, P., & Maloney, T. (2015). Using predictive modelling to identify students at risk of poor university outcomes. Higher Education, 70(1), 127–149. doi: 10.1007/s10734-014-9829-7.CrossRefGoogle Scholar
  23. Kline, R. B. (2011). Principles and practice of structural equation modeling (3rd ed.). New York: Guilford Press.Google Scholar
  24. Kristof-Brown, A. L., Zimmerman, R. D., & Johnson, E. C. (2005). Consequences of individuals' fit at work. A meta-analysis of person-job, person-organization, person-group, and person-supervisor fit. Personnel Psychology, 58(2), 281–342. doi: 10.1111/j.1744-6570.2005.00672.x.CrossRefGoogle Scholar
  25. Kuncel, N. R., Crede, M., & Thomas, L. L. (2005). The validity of self-reported grade point averages, class ranks, and test scores: a meta-analysis and review of the literature. Review of Educational Research, 75(1), 63–82. doi: 10.3102/00346543075001063.CrossRefGoogle Scholar
  26. Kyndt, E., Dochy, F., & Cascallar, E. (2014). Students' approaches to learning in higher education. The interplay between context and student. In D. Gijbels, V. Donche, J. T. Richardson, & J. D. Vermunt (Eds.), Learning patterns in higher education. Dimensions and research perspectives (pp. 249–272). London: Routledge.Google Scholar
  27. Larsen, M. R., Sommersel, H. B., & Larsen, M. S. (2013). Evidence on dropout phenomena at universities. Copenhagen: Danish Clearinghouse for Educational Research http://edu.au.dk/fileadmin/edu/Udgivelser/Clearinghouse/Review/Evidence_on_dropout_from_universities_brief_version.pdf.Google Scholar
  28. Li, Y., Yao, X., Chen, K., & Wang, Y. (2013). Different fit perceptions in an academic environment: attitudinal and behavioral outcomes. Journal of Career Assessment, 21(2), 163–174. doi: 10.1177/1069072712466713.CrossRefGoogle Scholar
  29. Lindblom-Ylänne, S., Saariaho, E., Inkinen, M., Haarala-Muhonen, A., & Hailikari, T. (2015). Academic procrastinators, strategic delayers and something betwixt and between. An interview study. Frontline Learning Research, 3(2), 47–62. doi: 10.14786/flr.v3i2.154.Google Scholar
  30. Marsh, H. (1987). The big-fish-little-pond effect on academic self-concept. Journal of Educational Psychology, 79(3), 280–295. doi: 10.1037/0022-0663.79.3.280.CrossRefGoogle Scholar
  31. Minnaert, A., & Janssen, P. J. (1998). The additive effect of regulatory activities on top of intelligence in relation to academic performance in higher education. Learning and Instruction, 9(1), 77–91. doi: 10.1016/s0959-4752(98)00019-x.CrossRefGoogle Scholar
  32. Muchinsky, P. M., & Monahan, C. J. (1987). What is person-environment congruence? Supplementary versus complementary models of fit. Journal of Vocational Behavior, 31, 268–277.CrossRefGoogle Scholar
  33. Nelson, K. J., Quinn, C., Marrington, A., & Clarke, J. A. (2012). Good practice for enhancing the engagement and success of commencing students. Higher Education, 63(1), 83–96. doi: 10.1007/s10734-011-9426-y.CrossRefGoogle Scholar
  34. Nijhuis, J., Segers, M., & Gijselaers, W. (2008). The extent of variability in learning strategies and students’ perceptions of the learning environment. Learning and Instruction, 18(2), 121–134. doi: 10.1016/j.learninstruc.2007.01.009.CrossRefGoogle Scholar
  35. Nurttila, S., Ketonen, E., & Lonka, K. (2015). Sense of competence and optimism as resources to promote academic engagement. Procedia - Social and Behavioral Sciences, 171, 1017–1026. doi: 10.1016/j.sbspro.2015.01.225.CrossRefGoogle Scholar
  36. Paderborn University. (2012). Studierenden - und Absolventenspiegel 2012 [Statistics on students and alumni]. Paderborn: Paderborn University https://www.uni-paderborn.de/fileadmin/zv/1-3/Statistiken/Studierendenspiegel_alt/Studierendenspiegel_2012.pdf.Google Scholar
  37. Peter, J. P., Churchill, G. A., & Brown, T. J. (1993). Caution in the use of difference scores in consumer research. Journal of Consumer Research, 19(4), 644–662. doi: 10.1086/209329.CrossRefGoogle Scholar
  38. Reis, S. M., & McCoach, D. B. (2000). The underachievement of gifted students: What do we know and where do we go? The Gifted Child Quarterly, 44(3), 152–170. doi: 10.1177/001698620004400302.CrossRefGoogle Scholar
  39. Richardson, J. T. (2011). Approaches to studying, conceptions of learning and learning styles in higher education. Learning and Individual Differences, 21(3), 288–293. doi: 10.1016/j.lindif.2010.11.015.CrossRefGoogle Scholar
  40. Richardson, M., Abraham, C., & Bond, R. (2012). Psychological correlates of university students' academic performance: a systematic review and meta-analysis. Psychological Bulletin, 138(2), 353–387. doi: 10.1037/a0026838.CrossRefGoogle Scholar
  41. Robbins, S. B., Lauver, K., Le, H., Davis, D., Langley, R., & Carlstrom, A. (2004). Do psychosocial and study skill factors predict college outcomes? A meta-analysis. Psychological Bulletin, 130(2), 261–288. doi: 10.1037/0033-2909.130.2.261.CrossRefGoogle Scholar
  42. Rosman, T., Mayer, A. K., & Krampen, G. (2015). Combining self-assessments and achievement tests in information literacy assessment: Empirical results and recommendations for practice. Assessment & Evaluation in Higher Education, 40(5), 740–754. doi: 10.1080/02602938.2014.950554.CrossRefGoogle Scholar
  43. Rosseel, Y. (2012). Lavaan. An R package for structural equation modeling. Journal of Statistical Software, 48(2), 1–36. doi: 10.18637/jss.v048.i02.CrossRefGoogle Scholar
  44. Schmitt, N., Oswald, F. L., Friede, A., Imus, A., & Merritt, S. (2008). Perceived fit with an academic environment: attitudinal and behavioral outcomes. Journal of Vocational Behavior, 72(3), 317–335. doi: 10.1016/j.jvb.2007.10.007.CrossRefGoogle Scholar
  45. Scholz, U., Gutiérrez Doña, B., Sud, S., & Schwarzer, R. (2002). Is general self-efficacy a universal construct? European Journal of Psychological Assessment, 18(3), 242–251. doi: 10.1027//1015-5759.18.3.242.CrossRefGoogle Scholar
  46. Severiens, S., Meeuwisse, M., & Born, M. (2015). Student experience and academic success: comparing a student-centred and a lecture-based course programme. Higher Education, 70(1), 1–17. doi: 10.1007/s10734-014-9820-3.CrossRefGoogle Scholar
  47. Tipton, R. M., & Worthington, E. L. (1984). The measurement of generalized self-efficacy. A study of construct validity. Journal of Personality Assessment, 48(5), 545–548.CrossRefGoogle Scholar
  48. Tracey, T. J., & Robbins, S. B. (2006). The interest–major congruence and college success relation: a longitudinal study. Journal of Vocational Behavior, 69(1), 64–89. doi: 10.1016/j.jvb.2005.11.003.CrossRefGoogle Scholar
  49. Trapmann, S., Hell, B., Hirn, J.-O. W., & Schuler, H. (2007a). Meta-analysis of the relationship between the big five and academic success at university. Zeitschrift für Psychologie, 215(2), 132–151. doi: 10.1027/0044-3409.215.2.132.CrossRefGoogle Scholar
  50. Trapmann, S., Hell, B., Weigand, S., & Schuler, H. (2007b). Die Validität von Schulnoten zur Vorhersage des Studienerfolgs - eine Metaanalyse [The validity of school grades for academic achievement—a meta-analysis]. Zeitschrift für Pädagogische Psychologie, 21(1), 11–27. doi: 10.1024/1010-0652.21.1.11.CrossRefGoogle Scholar
  51. Tynjälä, P. (2008). Perspectives into learning at the workplace. Educational Research Review, 3(2), 130–154. doi: 10.1016/j.edurev.2007.12.001.CrossRefGoogle Scholar
  52. Valentine, J. C., DuBois, D. L., & Cooper, H. (2004). The relation between self-beliefs and academic achievement: a meta-analytic review. Educational Psychologist, 39(2), 111–133. doi: 10.1207/s15326985ep3902_3.CrossRefGoogle Scholar
  53. Van Bragt, C. A. C., Bakx, A. W. E. A., Bergen, T. C. M., & Croon, M. A. (2011). Looking for students’ personal characteristics predicting study outcome. Higher Education, 61(1), 59–75. doi: 10.1007/s10734-010-9325-7.CrossRefGoogle Scholar
  54. Vermetten, Y. J., Vermunt, J. D., & Lodewijks, H. G. (2002). Powerful learning environments? How university students differ in their response to instructional measures. Learning and Instruction, 12, 263–284. doi: 10.1016/s0959-4752(01)00013-5.CrossRefGoogle Scholar
  55. Vermunt, J. D., & Endedijk, M. D. (2011). Patterns in teacher learning in different phases of the professional career. Learning and Individual Differences, 21(3), 294–302. doi: 10.1016/j.lindif.2010.11.019.CrossRefGoogle Scholar
  56. Vermunt, J. D., & Verloop, N. (1999). Congruence and friction between learning and teaching. Learning and Instruction, 9, 257–280.CrossRefGoogle Scholar
  57. Vermunt, J. D., Richardson, J. T., Donche, V., & Gijbels, D. (2014). Students' learning patterns in higher education. Dimensions, measurement and change. In D. Gijbels, V. Donche, J. T. Richardson, & J. D. Vermunt (Eds.), Learning patterns in higher education. Dimensions and research perspectives (pp. 295–310). London: Routledge.Google Scholar
  58. Vrieze, S. I. (2012). Model selection and psychological theory: a discussion of the differences between the Akaike information criterion (AIC) and the Bayesian information criterion (BIC). Psychological Methods, 17(2), 228–243. doi: 10.1037/a0027127.CrossRefGoogle Scholar
  59. Waldman, D. A., & Spangler, W. D. (1989). Putting together the pieces: a closer look at the determinants of job performance. Human Performance, 2(1), 29–59. doi: 10.1207/s15327043hup0201_2.CrossRefGoogle Scholar
  60. Wessel, J. L., Ryan, A. M., & Oswald, F. L. (2008). The relationship between objective and perceived fit with academic major, adaptability, and major-related outcomes. Journal of Vocational Behavior, 72(3), 363–376. doi: 10.1016/j.jvb.2007.11.003.CrossRefGoogle Scholar
  61. Zimmerman, R. D. (2008). Understanding the impact of personality traits on individuals' turnover decisions: a meta-analytic=5?> path model. Personnel Psychology, 61, 309–348. doi: 10.1111/j.1744-6570.2008.00115.x.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  • Carla Bohndick
    • 1
  • Tom Rosman
    • 2
  • Susanne Kohlmeyer
    • 3
  • Heike M. Buhl
    • 3
  1. 1.Methodology CenterUniversity of Koblenz-LandauLandauGermany
  2. 2.Leibniz Institute for Psychology InformationTrierGermany
  3. 3.Paderborn UniversityPaderbornGermany

Personalised recommendations