Higher Education

, Volume 73, Issue 3, pp 499–518 | Cite as

The growth trend in learning strategies during the transition from secondary to higher education in Flanders

  • Liesje Coertjens
  • Vincent Donche
  • Sven De Maeyer
  • Tine van Daal
  • Peter Van Petegem
Article

Abstract

As in many OECD countries, the first year in Flemish Higher Education is a major hurdle. Research on the experience of the transition period from secondary to higher education highlights the importance of the change in students’ teaching/learning environment. Though this change is hypothesised to affect students’ learning strategies, and hereby students’ chances of study success, studies examining the change in learning strategies during the transition period are absent. The present research is innovative in the way that it investigates the average and differential growth in learning strategies during the transition from secondary to higher education. All students from 36 secondary schools were logged onto the Inventory of Learning Styles-Short Version, and their progress was tracked over five waves from the beginning of the last year at secondary school to the beginning of their second year at a higher education establishment. Six hundred and thirty students were retained for analysis. Results indicate that students on average increased their self-regulated and deep learning during the transition. The results also showed an increase in students’ degree of analysing and lack of regulation. Furthermore, for all the scales except the memorizing scale, the evolution over time varied from student to student.

Keywords

Learning strategies Growth model Higher education Secondary education 

References

  1. Bollen, K. A. (1989). Structural equations with latent variables. New York: Wiley.CrossRefGoogle Scholar
  2. Bollen, K. A., & Curran, P. J. (2006). Latent curve models: a structural equation approach. Hoboken, NJ: Wiley.Google Scholar
  3. Busato, V., Prins, F. J., Elshout, J., & Hamaker, C. (1998). Learning styles: a cross-sectional and longitudinal study in higher education. Br J Educ Psychol, 68(3), 427–441. doi:10.1111/j.2044-8279.1998.tb01302.x.CrossRefGoogle Scholar
  4. Byrne, B. M. (2010). Structural equation modeling with AMOS. New York, NY: Routledge.Google Scholar
  5. Christie, H., Tett, L., Cree, V. E., Hounsell, J., & McCune, V. (2008). ‘A real rollercoaster of confidence and emotions’: learning to be a university student. Stud High Educ, 33(5), 567–581. doi:10.1080/03075070802373040.CrossRefGoogle Scholar
  6. Cliff, A. F. (2000). Dissonance in first-year students’ relfections on their learning. Eur J Psychol Educ, 15(1), 49–60. doi:10.1007/BF03173166.CrossRefGoogle Scholar
  7. Coertjens, L., Donche, V., De Maeyer, S., Vanthournout, G., & Van Petegem, P. (2013). Modeling change in learning strategies throughout higher education: a multi-indicator latent growth perspective. PLoS One, 8(7), e67854. doi:10.1371/journal.pone.0067854.CrossRefGoogle Scholar
  8. Cortina, J. M. (1993). What is coefficient alpha? An examination of theory and applications. J Appl Psychol, 78(1), 98–104. doi:10.1037/0021-9010.78.1.98.CrossRefGoogle Scholar
  9. Cree, V., Hounsell, J., Christie, H., McCune, V., & Tett, L. (2009). From further education to higher education: social work students’ experiences of transition to an ancient, research-led university. Soc Work Educ, 28(8), 887–901. doi:10.1080/02615470902736741.CrossRefGoogle Scholar
  10. Donche, V., & Van Petegem, P. (2008). Variability and consistency of learning patterns in teacher education. In E. Cools, H. Van den Broeck, C. Evans, & T. Redmond (Eds.), Style and cultural differences: how can organisations, regions and countries take advantages of style differences (pp. 65–74). Gent: Vlerick Leuven Gent management school.Google Scholar
  11. Duncan, T., Duncan, S., & Strycker, L. (2006). An introduction to latent variable growth curve modeling. Concepts, issues and applications. London: Erlbaum.Google Scholar
  12. Grimm, K. J., & Ram, N. (2009). Nonlinear growth models in Mplus and SAS. Struct Equ Model, 16(4), 676–701. doi:10.1080/10705510903206055.CrossRefGoogle Scholar
  13. Hogeronderwijsadministratie (2008). Studiesucces generatiestudenten 2007–2008 [Study success of generation students 2007–2008].Google Scholar
  14. Hultberg, J., Plos, K., Hendry, G. D., & Kjellgren, K. I. (2008). Scaffolding students’ transition to higher education: parallel introductory courses for students and teachers. J Furth High Educ, 32(1), 47–57. doi:10.1080/03098770701781440.CrossRefGoogle Scholar
  15. Jung, T., & Wickrama, K. (2008). An introduction to latent class growth analysis and growth mixture modeling. Soc Personal Psychol Compass, 2(1), 302–317. doi:10.1111/j.1751-9004.2007.00054.x.CrossRefGoogle Scholar
  16. Kim, S. Y., & Kim, J. S. (2012). Investigating stage-sequential growth mixture models with multiphase longitudinal data. Struct Equ Model Multidiscip J, 19(2), 293–319. doi:10.1080/10705511.2012.659632.CrossRefGoogle Scholar
  17. Lindblom-Ylänne, S., & Lonka, K. (1999). Individual ways of interacting with the learning environment—are they related to study success? Learn Instr, 9(1), 1–18. doi:10.1016/S0959-4752(98)00025-5.CrossRefGoogle Scholar
  18. Mäkinen, J., Olkinuora, E., & Lonka, K. (2004). Students at risk: students’ general study orientations and abandoning/prolonging the course of studies. High Educ, 48(2), 173–188. doi:10.1023/B:HIGH.0000034312.79289.ab.CrossRefGoogle Scholar
  19. Marambe, K. (2007). Patterns of student learning in medical education—a Sri Lankan study in a traditional curriculum. Unpublished doctoral dissertation. Maastricht: University of Maastricht.Google Scholar
  20. Muthén LK, & Muthén BO (2010). Growth modeling with latent variable using Mplus: Advanced growth models, survival analysis and missing data. Mplus Short Courses.Google Scholar
  21. OECD (2013). Education at a glance: OECD indicators.Google Scholar
  22. Phan, H. P. (2011). Deep processing strategies and critical thinking: developmental trajectories using latent growth analyses. J Educ Res, 104(4), 283–294. doi:10.1080/00220671003739382.CrossRefGoogle Scholar
  23. Richardson, J. T. E. (2013). Research issues in evaluating learning pattern development in higher education. Studies in Educational Evaluation, 39, 66–70. doi:10.1016/j.stueduc.2012.11.003.CrossRefGoogle Scholar
  24. Segers, M., Nijhuis, J., & Gijselaers, W. (2006). Redesigning a learning and assessment environment: the influence on students’ perceptions of assessment demands and their learning strategies. Studies in Educational Evaluation, 32(223–242). doi:10.1016/j.stueduc.2006.08.004.
  25. Severiens, S., Ten Dam, G., & Van Hout-Wolters, B. (2001). Stability of processing and regulation strategies: two longitudinal studies on student learning. High Educ, 42, 437–453. doi:10.1023/A:1012227619770.CrossRefGoogle Scholar
  26. Smith, L., Saini, B., Krass, I., Chen, T., Bosnic-Anticevich, S., & Sainsbury, E. (2007). Pharmacy students’ approaches to learning in an Australian university. Am J Pharm Educ, 71(6) Article 120. doi:10.5688/aj7106120.
  27. Tooth, D., Tonge, K., & McManus, I. C. (1989). Anxiety and study methods in preclinical students: causal relation to examination performance. Med Educ, 23(5), 416–421. doi:10.1111/j.1365-2923.1989.tb00896.x.CrossRefGoogle Scholar
  28. Torenbeek Jansen, E. P. W. A., & Hofman, W. H. A. (2010). The effect of the fit between secondary and university education of first-year student achievement. Stud High Educ, 35(6), 659–675. doi:10.1080/03075070903222625.CrossRefGoogle Scholar
  29. Vanthournout, G. (2011). Patterns in student learning: exploring a person-oriented and longitudinal research-perspective (Institute for Education and Information Sciences). Antwerp: Garant.Google Scholar
  30. Vanthournout, G., Donche, V., Gijbels, D., & Van Petegem, P. (2011). Further understanding learning in higher education: a systematic review on longitudinal research using Vermunt’s learning pattern model. In S. Rayner & E. Cools (Eds.), Style differences in cognition, learning and management: theory, research and practice (pp. 78–96). London: Routledge.Google Scholar
  31. Vanthournout, G., Gijbels, D., Coertjens, L., Donche, V., & Van Petegem, P. (2012). Students’ persistence and academic success in a first-year professional bachelor program: the influence of students’ learning strategies and academic motivation. Education Research International . doi:10.1155/2012/152747.Article ID 152747 Google Scholar
  32. Vermunt, J. (2005). Relations between student learning patterns and personal and contextual factors and academic performance. High Educ, 49, 205–234. doi:10.1007/s10734-004-6664-2.CrossRefGoogle Scholar
  33. Vermunt, J., & Minnaert, A. (2003). Dissonance in student learning patterns: when to revise theory? Studies in Educational Evaluation, 28, 49–61. doi:10.1080/03075070309301.Google Scholar
  34. Vermunt, J., & Vermetten, Y. (2004). Patterns in student learning: relationships between learning strategies, conceptions of learning and learning orientations. Educ Psychol Rev, 16(4), 359–384. doi:10.1007/s10648-004-0005-y.CrossRefGoogle Scholar
  35. Wang, J., & Wang, X. (2012). Structural equation modeling. Applications using Mplus (Wiley series in probability and statistics). West Sussex: Wiley.CrossRefGoogle Scholar
  36. Wothke, W. (2000). Longitudinal and multigroup modeling with missing data. In T. D. Little, K. U. Schnabel, & J. Baumert (Eds.), Modeling longitudinal and multilevel data. Practical issues, applied approaches, and specific examples. Mahwah, NJ: Lawrence Erlbaum Associates.Google Scholar
  37. Wu, A., Liu, Y., Gadermann, A. M., & Zumbo, B. D. (2010). Multiple-indicator multilevel growth model: a solution to multiple methodological challenges in longitudinal studies. Soc Indic Res, 97(2), 123–142. doi:10.1007/s11205-009-9496-8.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  • Liesje Coertjens
    • 1
    • 2
  • Vincent Donche
    • 2
  • Sven De Maeyer
    • 2
  • Tine van Daal
    • 2
  • Peter Van Petegem
    • 2
  1. 1.Psychological Sciences Research InstituteUniversité catholique de LouvainLouvain-la-NeuveBelgium
  2. 2.Department of Educational Sciences, Faculty of Social SciencesUniversity of AntwerpAntwerpBelgium

Personalised recommendations