High Energy Chemistry

, Volume 39, Issue 6, pp 386–391

The Hybrid Nanosystem Nanosized Silver Halide Grain-Dye in AOT Reverse Micelles

  • S. B. Brichkin
  • M. A. Osipova
  • T. M. Nikolaeva
  • V. F. Razumov
Photochemistry

Abstract

The specific features of spectral sensitization of photoinitiated reduction of nanosized AgHal grains by a carbocyanine dye were studied in pools of reverse micelles. The process was found to be effected by the dye adsorbed on nanosized grains in the monomeric B-trans state. It was shown that the adsorbed dye not only played the role of a sensitizer but also effectively stabilized the size of nanocrystals. As the result, hybrid nanosystems of the type nanosized grain-dye were formed, which could exist outside the protective micellar shell and could be isolated from micelles and transferred to any matrix.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    Meiklyar, P.V., Fizicheskie protsessy pri obrazovanii skrytogo fotograficheskogo izobrazheniya (Physical Processes in Latent Photographic Image Formation), Moscow: Nauka, 1972.Google Scholar
  2. 2.
    Shapiro, B.I., Zh. Nauchn. Prikl. Fotogr., 1992, vol. 37, no.2, p. 139.Google Scholar
  3. 3.
    James, T.H., The Theory of the Photographic Process, New York: Macmillan, 1977.Google Scholar
  4. 4.
    Mal'tsev, E.I., Lypenko, D.A., Shapiro, B.I., and Vannikov, A.V., Zh. Nauchn. Prikl. Fotogr., 2001, vol. 46, no.1, p. 13.Google Scholar
  5. 5.
    Borginon, H. and Danckaert, V., Photogr. Korresp., 1962, vol. 98, p. 74.Google Scholar
  6. 6.
    Boyer, S. and Cappelaere, J., J. Chem. Phys., 1963, vol. 6, no.9, p. 1123.Google Scholar
  7. 7.
    Steiger, R., Kitzing, R., Hagen, R., and Stoeckli-Evans, H., J. Photogr. Sci., 1974, vol. 22, no.3, p. 151.Google Scholar
  8. 8.
    Breslav, Yu.A., Kuznetsova, L.N., Uksusova, V.A., and Natanson, S.V., Zh. Nauchn. Prikl. Fotogr. Kinematogr., 1975, vol. 20, no.5, p. 321.Google Scholar
  9. 9.
    Markocki, W., J. Photogr. Sci., 1965, vol. 13, p. 85.Google Scholar
  10. 10.
    Gunther, E. and Moisar, E., J. Photogr. Sci., 1965, vol. 13, p. 280.Google Scholar
  11. 11.
    Eggers, J., Gunther, E., and Moisar, E., Photogr. Korresp., 1966, vol. 102, p. 144.Google Scholar
  12. 12.
    Philippaerts, H., Vanassche, W., Claes, F.H., and Borginon, H., J. Photogr. Sci., 1972, vol. 20, p. 215.Google Scholar
  13. 13.
    Yao, H., Kawabata, R., Ikeda, H., and Kitamura, N., Phys. Chem. Chem. Phys., 1999, vol. 1, p. 4629.CrossRefGoogle Scholar
  14. 14.
    Shapiro, B.I., Teoreticheskie nachala fotograficheskogo protsessa (Theoretical Principles of the Photographic Process), Moscow: Editorial URSS, 2000.Google Scholar
  15. 15.
    Jeuniea, L., Verbouwe, W., Roussea, E., Van der Auweraer, M., and Nagu, J.B., Langmuir, 2000, vol. 16, p. 1602.CrossRefGoogle Scholar
  16. 16.
    Brichkin, S.B., Kurandina, M.A., Nikolaeva, T.M., and Razumov, V.F., Khim. Vys. Energ., 2005, vol. 39, no.1, p. 21 [High Energy Chem. (Engl. Transl.), 2005, vol. 39, no. 1, p. 18].Google Scholar
  17. 17.
    Spirin, M.G., Brichkin, S.B., and Razumov, V.F., Zh. Nauchn. Prikl. Fotogr., 2002, vol. 47, no.6, p. 22.Google Scholar
  18. 18.
    Brichkin, S.B., Razumov, V.F., Spirin, M.G., and Alfimov, M.V., Dokl. Akad. Nauk, 1998, vol. 358, no.2, p. 198.Google Scholar
  19. 19.
    Eastoe, J., Robinson, B.H., Visser, A.J.W.G., and Steytler, D.C., J. Chem. Soc., Faraday Trans., 1991, vol. 87, no.12, p. 1899.Google Scholar
  20. 20.
    Osten, W.V. and Stolz, H., Phys. Solids, 1990, vol. 51, p. 765.CrossRefGoogle Scholar
  21. 21.
    Poddymov, V.P., Dibrov, I.A., and Balakirev, V.F., Termodinamika i kinetika fotograficheskogo protsessa (Thermodynamics and Kinetics of the Photographic Process), Sverdlovsk: Ural'skii rabochii, 1989, p. 112.Google Scholar
  22. 22.
    Meez, K. and James, T.H., The Theory of the Photographic Process, New York: Macmillan, 1969. Translated under the title Teoriya fotograficheskogo protsessa, Leningrad: Khimiya, 1973.Google Scholar
  23. 23.
    Linnert, T., Mulvaney, P., Henglein, A., and Weller, H., J. Am. Chem. Soc., 1990, vol. 112, no.12, p. 4657.CrossRefGoogle Scholar
  24. 24.
    Henglein, A. and Giersig, M., J. Phys. Chem. B, 1999, vol. 103, p. 9533.CrossRefGoogle Scholar
  25. 25.
    Han, H.S., Han, S.W., Kim, C.H., and Kim, K., Langmuir, 2000, vol. 16, no.3, p. 1149.CrossRefGoogle Scholar
  26. 26.
    Motte, L., Billoudet, F., and Pileni, M.P., J. Phys. Chem., 1995, vol. 99, p. 16425.CrossRefGoogle Scholar
  27. 27.
    Spirin, M.G., Brichkin, S.B., and Razumov, V.F., Kolloidn. Zh., 2003, vol. 65, no.3, p. 403.Google Scholar

Copyright information

© MAIK "Nauka/Interperiodica" 2005

Authors and Affiliations

  • S. B. Brichkin
    • 1
  • M. A. Osipova
    • 1
  • T. M. Nikolaeva
    • 1
  • V. F. Razumov
    • 1
  1. 1.Institute of Problems of Chemical PhysicsRussian Academy of SciencesChernogolovka, Moscow oblastRussia

Personalised recommendations