Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Pareto-based evolutionary multiobjective approaches and the generalized Nash equilibrium problem

  • 18 Accesses


Pareto-based evolutionary multiobjective approaches are methods that use the Pareto dominance concept to guide the search of evolutionary algorithms towards the Pareto frontier of a problem. To address the challenge of providing an entire set of optimal solutions they use specially designed mechanisms for preserving search diversity and maintaining the non-dominated solutions set. The limitation of the Pareto dominance relation in high-dimensional spaces has rendered these methods inefficient for many-objective optimization. In this paper we aim to exploit existing Pareto-based methods to compute the generalized Nash equilibrium for multi-player games by replacing the Pareto dominance relation with an equilibrium generative relation. The generalized Nash equilibrium extends the Nash equilibrium concept by considering constraints over players’ strategies. Numerical experiments indicate that the selected methods can be employed for equilibria computation even for games with up to twenty players.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7


  1. Abada, I., Gabriel, S., Briat, V., Massol, O.: A Generalized nash-cournot model for the northwestern European natural gas markets with a fuel substitution demand function: the GaMMES model. Netw. Sp. Econ. 13(1), 1–42 (2013)

  2. Allevi, E., Oggioni, G., Riccardi, R., Rocco, M.: Evaluating the carbon leakage effect on cement sector under different climate policies. J. Clean. Prod. 163, 320–337 (2015)

  3. Anselmi, J., Ardagna, D., Passacantando, M.: Generalized nash equilibria for SaaS/PaaS clouds. Eur. J. Oper. Res. 236(1), 326–339 (2014)

  4. Ardagna, D., Ciavotta, M., Passacantando, M.: Generalized nash equilibria for the service provisioning problem in multi-cloud systems. IEEE Trans. Serv. Comput. 10(3), 381–395 (2015)

  5. Ardagna, D., Panicucci, B., Passacantando, M.: Generalized nash equilibria for the service provisioning problem in cloud systems. IEEE Trans. Serv. Comput. 6(4) (2013)

  6. Arrow, K.J., Debreu, G.: Existence of an equilibrium for a competitive economy. Econ. J. Econ. Soc. 22, 265–290 (1954)

  7. Breton, M., Zaccour, G., Zahaf, M.: A game-theoretic formulation of joint implementation of environmental projects. Eur. J. Oper. Res. 168(1), 221–239 (2006)

  8. Cardell, J.B., Hitt, C.C., Hogan, W.W.: Market power and strategic interaction in electricity networks. Resour. Energy Econ. 19(1–2), 109–137 (1997)

  9. Cardellini, V., DeNittoPersoné, V., Di Valerio, V., Facchinei, F., Grassi, V., Presti, F.L., Piccialli, V.: A game-theoretic approach to computation offloading in mobile cloud computing. Math. Program 157(2), 421–449 (2016)

  10. Chen, B., Zeng, W., Lin, Y., Zhang, D.: A new local search-based multiobjective optimization algorithm. IEEE Trans. Evol. Comput. 19(1), 50–73 (2015)

  11. Chen, F., Su, W., Batalama, S.N., Matyjas, J.D.: On transceiver beamformer design for multi-source multi-destination wireless networks. In: GLOBECOM–IEEE Global Telecommunications Conference (2011)

  12. Coello, C.A. Coello, Lechuga, M.S.: Mopso: a proposal for multiple objective particle swarm optimization. In: Proceedings of the 2002 Congress on Evolutionary Computation, 2002. CEC ’02., vol. 2, pp. 1051–1056 (2002)

  13. Cournot, A.: Researches in to the Mathematical Principles of the Theory of Wealth. Macmillan, New York (1897)

  14. De Maere D’Aertrycke, G., Smeers, Y.: Liquidity risks on power exchanges: a generalized Nash equilibrium model. Math. Programm. 140(2), 381–414 (2013)

  15. Deb, K., Jain, H.: An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, part i: solving problems with box constraints. IEEE Trans. Evol. Comput. 18(4), 577–601 (2014)

  16. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: Nsga-ii. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)

  17. Deb, K.: An efficient constraint handling method for genetic algorithms. Comput. Methods Appl. Mech. Eng. 186, 311–338 (2000)

  18. Deb, K.: Multi-Objective Optimization Using Evolutionary Algorithms. Wiley, New York (2001)

  19. Debreu, G.: A social equilibrium existence theorem. Proc. Natl. Acad. Sci. USA 38(10), 886 (1952)

  20. Emmerich, M., Deutz, A.: A tutorial on multiobjective optimization: fundamentals and evolutionary methods. Nat. Comput. 17(3), 585–609 (2018)

  21. Facchinei, F., Fischer, A., Piccialli, V.: On generalized nash games and variational inequalities. Oper. Res. Lett. 35(2), 159–164 (2007)

  22. Facchinei, F., Fischer, A., Piccialli, V.: Generalized nash equilibrium problems and newton methods. Math. Program. 117(1–2), 163–194 (2009)

  23. Facchinei, F., Kanzow, C.: Penalty methods for the solution of generalized nash equilibrium problems. SIAM J. Optim. 20(5), 2228–2253 (2010)

  24. Gregori, M., Matamoros, J., Gregoratti, D.: Demand response aggregators in microgrid energy trading. In: 2016 IEEE Global Conference on Signal and Information Processing, GlobalSIP 2016–Proceedings (2017)

  25. Han, D., Zhang, H., Qian, G., Lingling, X.: An improved two-step method for solving generalized nash equilibrium problems. Eur. J. Oper. Res. 216(3), 613–623 (2012)

  26. Hansen, N., Ostermeier, A.: Completely derandomized self-adaptation in evolution strategies. Evol. Comput. 9(2), 159–195 (2001)

  27. Harker, P.T.: Generalized nash games and quasi-variational inequalities. Eur. J. Oper. Res. 54(1), 81–94 (1991)

  28. Igel, C., Hansen, N., Roth, S.: Covariance matrix adaptation for multi-objective optimization. Evol. Comput. 15(1), 1–28 (2007)

  29. Javan, M.R., Sharafat, A.R.: Distributed joint resource allocation in primary and cognitive wireless networks. IEEE Trans. Commun. 61(5), 1708–1719 (2013)

  30. Kesselman, A., Leonardi, S., Bonifaci, V.: Game-theoretic analysis of internet switching with selfish users. In: Internet and Network Economics, pp. 236–245. Springer, Berlin (2005)

  31. Koh, Andrew: Differential evolution based bi-level programming algorithm for computing normalized nash equilibrium. In: Soft Computing in Industrial Applications, pp. 97–106. Springer, Berlin (2011)

  32. Krawczyk, J.B., Uryasev, S.: Relaxation algorithms to find nash equilibria with economic applications. Environ. Model. Assess. 5(1), 63–73 (2000)

  33. Kukkonen, S., Lampinen, J.: Gde3: the third evolution step of generalized differential evolution. In: 2005 IEEE Congress on Evolutionary Computation, vol. 1, pp. 443–450 Vol. 1 (2005)

  34. Lung, R.I., Dumitrescu, D.: Computing Nash equilibria by means of evolutionary computation. Int. J. Comput. Commun. Control 3, 364–368 (2008)

  35. Lung, R.I., Mihoc, T.D., Dumitrescu, D.: Nash equilibria detection for multi-player games. In: IEEE Congress on Evolutionary Computation, pp. 1–5 (2010)

  36. Matioli, L.C., Sosa, W., Yuan, J.: A numerical algorithm for finding solutions of a generalized nash equilibrium problem. Comput. Optim. Appl. 52(1), 281–292 (2012)

  37. Mihoc, T.D., Lung, R.I., Dumitrescu, D.: Notes on a fitness solution for nash equilibria in large games. In: 2010 11th International Symposium on Computational Intelligence and Informatics (CINTI), pp. 53–56. IEEE (2010)

  38. Nagurney, A., Flores, E.A., Soylu, C.: A Generalized nash equilibrium network model for post-disaster humanitarian relief. Transp. Res. Part E Logist. Transp. Rev. 95, 1–18 (2016)

  39. Nagurney, A., Yu, M., Besik, D.: Supply chain network capacity competition with outsourcing: a variational equilibrium framework. J. Glob. Optim. 69, 231–254 (2017)

  40. Nash, J.: Non-cooperative games. Ann. Math. 54(2), 286–295 (1951)

  41. Oggioni, G., Smeers, Y.: Market failures of market coupling and counter-trading in Europe: an illustrative model based discussion. Energy Econ. 35, 74–87 (2013)

  42. Oliveira, H.A., Petraglia, A.: Solving generalized nash equilibrium problems through stochastic global optimization. Appl. Soft Comput. 39, 21–35 (2016)

  43. Outrata, J.V., Zowe, J.: A newton method for a class of quasi-variational inequalities. Comput. Optim. Appl. 4(1), 5–21 (1995)

  44. Panicucci, B., Pappalardo, M., Passacantando, M.: On solving generalized nash equilibrium problems via optimization. Optim. Lett. 3(3), 419–435 (2009)

  45. Passacantando, M., Ardagna, D., Savi, A.: Service provisioning problem in cloud and multi-cloud systems. INFORMS J. Comput. 28(2), 265–277 (2016)

  46. Prati, L.: A generalized nash equilibrium problem for centralized dynamic spectrum leasing. Int. J. Pure Appl. Math. 85(2), 367–382 (2013)

  47. Scrimali, L.: Mixed behavior network equilibria and quasi-variational inequalities. J. Ind. Manag. Optim. 5(2), 363–379 (2009)

  48. Storn, R., Price, K.: Differential evolution - a simple and efficient heuristic for global optimization over continuous spaces. J. Global Optim. 11(4), 341–359 (1997)

  49. Suciu, M., Gaskó, N., Lung, R.I., Dumitrescu, D.: Nature Inspired Cooperative Strategies for Optimization (NICSO 2013): Learning, Optimization and Interdisciplinary Applications, chapter Nash Equilibria Detection for Discrete-Time Generalized Cournot Dynamic Oligopolies, pp. 343–354. Springer International Publishing, Cham (2014)

  50. Tian, Y., Cheng, R., Zhang, X., Jin, Y.: Platemo: A matlab platform for evolutionary multi-objective optimization. IEEE Comput. Intell. Mag. 12(4), 73–87 (2017)

  51. Uryas’ev, S., Rubinstein, R.Y.: On relaxation algorithms in computation of noncooperative equilibria. IEEE Trans. Autom. Control 39(6), 1263–1267 (1994)

  52. Van Veldhuizen, D.A., Lamont, G.B.: On measuring multiobjective evolutionary algorithm performance. In: Proceedings of the 2000 congress on evolutionary computation, 2000, vol. 1, pp. 204–211. IEEE (2000)

  53. von Heusinger, A., Kanzow, C.: Optimization reformulations of the generalized nash equilibrium problem using nikaido-isoda-type functions. Comput. Optim. Appl. 43(3), 353–377 (2009)

  54. Wang, J., Peng, M., Jin, S., Zhao, C.: A generalized nash equilibrium approach for robust cognitive radio networks via generalized variational inequalities. IEEE Trans. Wirel. Commun. 13(7), 3701–3714 (2014)

  55. Yang, X., Ban, X.J., Ma, R.: Mixed equilibria with common constraints on transportation networks. Netw. Sp. Econ. 17, 547–579 (2016)

  56. Yuan, Y., Xu, H., Wang, B., Yao, X.: A new dominance relation-based evolutionary algorithm for many-objective optimization. IEEE Trans. Evol. Comput. 20(1), 16–37 (2016)

  57. Zhang, J., Biao, Q., Xiu, N.: Some projection-like methods for the generalized nash equilibria. Comput. Optim. Appl. 45(1), 89–109 (2010)

  58. Zhang, Q., Li, H.: MOEA/D: A multiobjective evolutionary algorithm based on decomposition. IEEE Trans. Evol. Comput. 11, 712–731 (2007)

  59. Zheng, J., Cai, Y., Chen, X., Li, R., Zhang, H.: A game-theoretic approach for optimal base station sleeping in green cellular networks. In: 2014 6th International Conference on Wireless Communications and Signal Processing, WCSP 2014 (2014)

  60. Zheng, J., Cai, Y., Chen, X., Li, R., Zhang, H.: Optimal base station sleeping in green cellular networks: a distributed cooperative framework based on game theory. IEEE Trans. Wirel. Commun. 14(8), 4391–4406 (2015)

  61. Zhu, K., Hossain, E., Anpalagan, A.: Downlink power control in two-tier cellular OFDMA networks under uncertainties: a robust stackelberg game. IEEE Trans. Commun. 63(2), 520–535 (2015)

Download references


This work was supported by a grant of the Romanian National Authority for Scientific Research and Innovation, CNCS - UEFISCDI, Project Number PN-II-RU-TE-2014-4-2560.

Author information

Correspondence to Noémi Gaskó.

Ethics declarations

Conflict of interest

They authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.



Modifications made to the PLATEMO code are listed in what follows. Apart from function NDSort, function NashAscends is used to determine the relation between strategies x and y, while function game returns the domination count for each individual in the population.


Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lung, R.I., Gaskó, N. & Suciu, M.A. Pareto-based evolutionary multiobjective approaches and the generalized Nash equilibrium problem. J Heuristics (2020). https://doi.org/10.1007/s10732-020-09438-w

Download citation


  • Generalized Nash equilibrium problem
  • Multi-objective optimization
  • Evolutionary algorithms