Basic variable neighborhood search for the minimum sitting arrangement problem

  • Eduardo G. PardoEmail author
  • Antonio García-Sánchez
  • Marc Sevaux
  • Abraham DuarteEmail author


The minimum sitting arrangement (MinSA) problem is a linear layout problem consisting in minimizing the number of errors produced when a signed graph is embedded into a line. This problem has been previously tackled by theoretical and heuristic approaches in the literature. In this paper we present a basic variable neighborhood search (BVNS) algorithm for solving the problem. First, we introduce a novel constructive scheme based on the identification of cliques from the input graph, when only the positive edges are considered. The solutions obtained by the constructive procedure are then used as a starting point for the proposed BVNS algorithm. Efficient implementations of the several configurations of the local search procedure within the BVNS are described. The algorithmic proposal is then compared with previous approaches in the state of the art for the MinSA over different sets of referred instances. The obtained results supported by non-parametric statistical tests, indicate that BVNS can be considered as the new state-of-the-art algorithm for the MinSA.


Sitting arrangement problem Variable neighborhood search Basic variable neighborhood search Graph embedding Linear layout 



This work has been partially supported by the Ministerio de Ciencia, Innovación y Universidades under Grant Ref. PGC2018-095322-B-C22 and Comunidad de Madrid and European Regional Development Fund with Grant Ref. S2018/TCS-4566.


  1. Benítez, F., Aracena, J., Thraves, C.: The sitting closer to friends than enemies problem in the circumference. Technical report (2018). arXiv:1811.02699
  2. Bron, C., Kerbosch, J.: Algorithm 457: finding all cliques of an undirected graph. Commun. ACM 16(9), 575–577 (1973). ISSN 0001-0782CrossRefGoogle Scholar
  3. Burkard, R.E., Çela, E., Pardalos, P.M., Pitsoulis, L.S.: The quadratic assignment problem. In: Du, D.-Z., Pardalos, P.M. (eds.) Handbook of Combinatorial Optimization. Springer, Boston, MA (1998) Google Scholar
  4. Cygan, M., Pilipczuk, M., Pilipczuk, M., Wojtaszczyk, J.O.: Sitting closer to friends than enemies, revisited. In: Proceedings of the 37th International Conference on Mathematical Foundations of Computer Science, MFCS’12, pp. 296–307, Berlin, Heidelberg (2012). Springer-Verlag. ISBN 978-3-642-32588-5Google Scholar
  5. Cygan, M., Pilipczuk, M., Pilipczuk, M., Wojtaszczyk, J.O.: Sitting closer to friends than enemies, revisited. Theory Comput. Syst. 56(2), 394–405 (2015)MathSciNetCrossRefGoogle Scholar
  6. Duarte, A., Pantrigo, J.J., Pardo, E.G., Mladenović, N.: Multi-objective variable neighborhood search: an application to combinatorial optimization problems. J. Glob. Optim. 63(3), 515–536 (2015)MathSciNetCrossRefGoogle Scholar
  7. Duarte, A., Pantrigo, J.J., Pardo, E.G., Sánchez-Oro, J.: Parallel variable neighbourhood search strategies for the cutwidth minimization problem. IMA J. Manag. Math. 27(1), 55–73 (2016)MathSciNetCrossRefGoogle Scholar
  8. Feo, T.A., Resende, M.G.C.: Greedy randomized adaptive search procedures. J. Glob. Optim. 6(2), 109–133 (1995)MathSciNetCrossRefGoogle Scholar
  9. Hansen, N., Mladenović, P., Todosijević, R., Hanafi, S.: Variable neighborhood search: basics and variants. EURO J. Comput. Optim. 5(3), 423–454 (2017). ISSN 2192-4414MathSciNetCrossRefGoogle Scholar
  10. Hansen, P., Mladenović, N.: Variable Neighborhood Search, pp. 313–337. Springer US, Boston (2014). ISBN 978-1-4614-6940-7Google Scholar
  11. Harary, F.: Graph Theory. In: Addison-Wesley Series in Mathematics. Addison Wesley, Reading (1969)Google Scholar
  12. Karp, R.M.: Reducibility Among Combinatorial Problems, pp. 85–103. Springer US, Boston (1972). ISBN 978-1-4684-2001-2CrossRefGoogle Scholar
  13. Kermarrec, A.-M., Thraves, C.: Can Everybody Sit Closer to Their Friends Than Their Enemies? pp. 388–399. Springer, Berlin (2011). ISBN 978-3-642-22993-0CrossRefGoogle Scholar
  14. Kermarrec, A.-M., Thraves, C.: Signed graph embedding: when everybody can sit closer to friends than enemies. CoRR (2014). arXiv:1405.5023
  15. Laguna, M., Martí, R., Campos, V.: Intensification and diversification with elite tabu search solutions for the linear ordering problem. Comput. Oper. Res. 26(12), 1217–1230 (1999). ISSN 0305-0548CrossRefGoogle Scholar
  16. Leskovec, J., Huttenlocher, D., Kleinberg, J.: Signed networks in social media. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, CHI ’10, pp. 1361–1370, New York, NY (2010a). ACM. ISBN 978-1-60558-929-9Google Scholar
  17. Leskovec, J., Huttenlocher, D., Kleinberg, J.: Predicting positive and negative links in online social networks. In: Proceedings of the 19th International Conference on World Wide Web, WWW’10, pp. 641–650, New York, NY (2010b). ACM. ISBN 978-1-60558-799-8Google Scholar
  18. Lozano, M., Duarte, A., Gortázar, F., Martí, R.: Variable neighborhood search with ejection chains for the antibandwidth problem. J. Heuristics 18(6), 919–938 (2012)CrossRefGoogle Scholar
  19. Mladenović, N., Hansen, P.: Variable neighborhood search. Comput. Oper. Res. 24(11), 1097–1100 (1997)MathSciNetCrossRefGoogle Scholar
  20. Pantrigo, J.J., Martí, R., Duarte, A., Pardo, E.G.: Scatter search for the cutwidth minimization problem. Ann. Oper. Res. 199(1), 285–304 (2012)MathSciNetCrossRefGoogle Scholar
  21. Pardalos, P.M., Rendl, F., Wolkowicz, H.: The quadratic assignment problem: a survey and recent developments. In: Proceedings of the DIMACS Workshop on Quadratic Assignment Problems, volume 16 of DIMACS Series in Discrete Mathematics and Theoretical Computer Science, pp. 1–42. American Mathematical Society (1994)Google Scholar
  22. Pardo, E.G., Soto, M., Thraves, C.: Embedding signed graphs in the line. J. Combin. Optim. 29(2), 451–471 (2015). ISSN 1573-2886CrossRefGoogle Scholar
  23. Pardo, E.G., Martí, R., Duarte, A.: Linear layout problems. In: Martí, R., Panos, P., Resende, M. (eds.) Handbook of Heuristics. Springer, Cham (2016)Google Scholar
  24. Pardo, E.G., Mladenović, N., Pantrigo, J.J., Duarte, A.: Variable formulation search for the cutwidth minimization problem. Appl. Soft Comput. 13(5), 2242–2252 (2013)CrossRefGoogle Scholar
  25. Safro, I., Ron, D., Brandt, A.: Graph minimum linear arrangement by multilevel weighted edge contractions. J. Algorithms 60(1), 24–41 (2006). ISSN 0196-6774MathSciNetCrossRefGoogle Scholar
  26. Sánchez-Oro, J., Pantrigo, J.J., Duarte, A.: Combining intensification and diversification strategies in VNS. An application to the vertex separation problem. Comput. Oper. Res. 52(Part B(0)), 209–219 (2014)MathSciNetCrossRefGoogle Scholar
  27. Szell, M., Lambiotte, R., Thurner, S.: Multirelational organization of large-scale social networks in an online world. Proc. Natl. Acad. Sci. 107(31), 13636–13641 (2010)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  1. 1.Dept. of Computer SciencesUniversidad Rey Juan CarlosMóstolesSpain
  2. 2.Dept. Sistemas InformáticosUniversidad Politécnica de MadridMadridSpain
  3. 3.Lab-STICC, UMR 6285, CNRSUniversitè de Bretagne-SudLorientFrance

Personalised recommendations