Advertisement

Journal of Heuristics

, Volume 25, Issue 4–5, pp 809–836 | Cite as

Swarm hyperheuristic framework

  • Surafel Luleseged TilahunEmail author
  • Mohamed A. Tawhid
Article

Abstract

Swarm intelligence is one of the central focus areas in the study of metaheuristic algorithms. The effectiveness of these algorithms towards solving difficult problems has attracted researchers and practitioners. As a result, numerous type of this algorithm have been proposed. However, there is a heavy critics that some of these algorithms lack novelty. In fact, some of these algorithms are the same in terms of the updating operators but with different mimicking scenarios and names. The performance of a metaheuristic algorithm depends on how it balance the degree of the two basic search mechanisms, namely intensification and diversification. Hence, introducing novel algorithms which contributes to a new way of search mechanism is welcome but not for a mere repetition of the same algorithm with the same or perturbed operators but different metaphor. With this regard, it is ideal to have a framework where different custom made operators are used along with existing or new operators. Hence, this paper presents a swarm hyperheuristic framework, where updating operators are taken as low level heuristics and guided by a high level hyperheuristic. Different learning approaches are also proposed to guide the intensification and diversification search behaviour of the algorithm. Hence, a swarm hyperheuristic without learning (\({ SHH}1\)), with offline learning (\({ SHH}2)\) and with an online learning (\({ SHH}3\)) is proposed and discussed. A simulation based comparison and discussion is also presented using a set of nine updating operators with selected metaheuristic algorithms based on twenty benchmark problems. The problems are selected from both unconstrained and constrained optimization problems with their dimension ranging from two to fifty. The simulation results show that the proposed approach with learning has a better performance in general.

Keywords

Swarm intelligence Hyperheuristic Swarm hyperheuristic Intensification versus diversification Swam framework 

Notes

Acknowledgements

The first author would like to acknowledge a support from the IMU—Simons African Fellowship Program 2017 while visiting the Department of Mathematics and Statistics, Thompson Rivers University, BC, Canada. The research of the 2nd author is supported in part by the Natural Sciences and Engineering Research Council of Canada (NSERC).

References

  1. Abbass, H.A.: MBO: Marriage in honey bees optimization: a haplometrosis polygynous swarming approach. In: Proceedings of the 2001 IEEE Congress on Evolutionary Computation, pp. 207–214 (2001)Google Scholar
  2. Abraham, A., Das, S., Roy, S.: Swarm intelligence algorithms for data clustering. In: Soft Computing for Knowledge Discovery and Data Mining, pp. 279–313 (2008)Google Scholar
  3. Ali, A.F., Tawhid, M.A.: A hybrid PSO and DE algorithm for solving engineering optimization problems. Appl. Math. Inf. Sci. 10(2), 431–449 (2016)Google Scholar
  4. Ali, A.F., Tawhid, M.A.: Hybrid simulated annealing and pattern search method for solving minimax and integer programming problems. Pac. J. Optim. 12(1), 151–184 (2016)MathSciNetzbMATHGoogle Scholar
  5. Ali, A.F., Tawhid, M.A.: A hybrid cuckoo search algorithm with Nelder Mead method for solving global optimization problems. SpringerPlus 5(1), 473 (2016)Google Scholar
  6. Ali, A.F., Tawhid, M.A.: Hybrid particle swarm optimization and genetic algorithm for minimizing potential energy function. Ain Shams Eng. J. 8(2), 191–206 (2017)Google Scholar
  7. Askarzadeh, A., Rezazadeh, A.: A new heuristic optimization algorithm for modelling of proton exchange membrane fuel cell: bird mating optimizer. Int. J. Energy Res. 37, 1196–1204 (2013)Google Scholar
  8. Bai, H., Zhao, B.: A survey on application of swarm intelligence computation to electric power system. In: Intelligent Control and Automation, 2006. WCICA 2006. The Sixth World Congress on, Vol. 2, pp. 7587–7591. IEEE (2006)Google Scholar
  9. Blum, C., Li, X.: Swarm intelligence in optimization. In: Blum, C., Merkle, D. (eds.) Swarm Intelligence, pp. 43–85. Springer, Berlin (2008)Google Scholar
  10. Blum, C., Merkle, D.: Swarm Intelligence: Introduction and Applications. Springer, Berlin (2008)zbMATHGoogle Scholar
  11. Blum, C., Roli, A.: Metaheuristics in combinatorial optimization: overview and conceptual comparison. ACM Comput. Surv. (CSUR) 35, 268–308 (2003)Google Scholar
  12. Bonabeau, E., Dorigo, M., Theraulaz, G.: Swarm Intelligence: Fromnaturalto Artificial Systems. Oxford University Press, NewYork (1999)zbMATHGoogle Scholar
  13. Burke, E.K., Gendreau, M., Hyde, M., Kendall, G., Ochoa, G., Ozcan, E., Qu, R.: Hyper-heuristics: a survey of the state of the art. J. Oper. Res. Soc. 64, 1695–1724 (2013)Google Scholar
  14. Cheng, S., Shi, Y., Qin, Q., Bai, R.: Swarm intelligence in big data analytics. In: International Conference on Intelligent Data Engineering and Automated Learning, pp. 417–426. Springer, Berlin (2013)Google Scholar
  15. Colorni, A., Dorigo, M., Maniezzo, V.: Distributed optimization by ant colonies. In: Proceedings of the First European Conference on Artificial Life, pp. 134–142. Paris (1991)Google Scholar
  16. Consoli, S., Darby-Dowman, K.: Combinatorial optimization and metaheuristics. Brunel University (2006)Google Scholar
  17. Cowling, P., Kendall, G., Soubeiga, E.: A hyperheuristic approach to scheduling a sales summit. In: International Conference on the Practice and Theory of Automated Timetabling, pp. 176–190. Springer, Berlin (2000)Google Scholar
  18. Crepinek, M., Liu, S.H., Mernik, M.: Exploration and exploitation in evolutionary algorithms: a survey. ACM Comput. Surv. (CSUR) 45(3), 35 (2013)Google Scholar
  19. Crepinek, M., Liu, S.H., Mernik, M.: Replication and comparison of computational experiments in applied evolutionary computing: common pitfalls and guidelines to avoid them. Appl. Soft Comput. 19, 161–170 (2014)Google Scholar
  20. Crowston, W.B., Glover, F., Thompson, G.L., Trawick, J.D.: Probabilistic and parametric learning combinations of local job shop scheduling rules. In: ONR Research Memorandum, GSIA. Carnegie Mellon University, Pittsburgh (1963)Google Scholar
  21. Deb, K.: Optimization for Engineering Design: Algorithms and Examples. PHI Learning Pvt. Ltd., Delhi (2012)Google Scholar
  22. Derrac, J., Garca, S., Molina, D., Herrera, F.: A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms. Swarm Evol. Comput. 1(1), 3–18 (2011)Google Scholar
  23. Dorigo, M., Maniezzo, V., Colorni, A.: Ant system: optimization by a colony of cooperating agents. IEEE Trans. Syst. Man Cybern. Part B: Cybern. 26, 29–41 (1996)Google Scholar
  24. Dorigo, M., Gambardella, L.M.: Ant colonies for the traveling salesman problem. BioSystems 43, 73–81 (1997)Google Scholar
  25. Ducatelle, F., Di Caro, G.A., Gambardella, L.M.: Principles and applications of swarm intelligence for adaptive routing in telecommunications networks. Swarm Intell. 4(3), 173–198 (2010)Google Scholar
  26. Eberhart, R., Kennedy, J.: A new optimizer using particle swarm theory. In: Proceedings of the Sixth International Symposium on Micro Machine and Human Science, 1995. MHS’95, pp. 39–43. IEEE. (1995).  https://doi.org/10.1109/MHS.1995.494215
  27. Fisher, H., Thompson, G.L.: Probabilistic learning combinations of local job-shop scheduling rules. In: Muth, J., Thompson, G. (eds.) Industrial Scheduling, pp. 225–251. Prentice Hall, Upper Saddle River (1963)Google Scholar
  28. Gandomi, A.H., Alavi, A.H.: Krill herd: a new bio-inspired optimization algorithm. Commun. Nonlinear Sci. Numer. Simul. 17, 4831–4845 (2012)MathSciNetzbMATHGoogle Scholar
  29. Garcia, F.J.M., Perez, J.A.M.: Jumping frogs optimization: a new swarm method for discrete optimization. Documentos de Trabajo del DEIOC (2008)Google Scholar
  30. Gavana, A.: Global optimization benchmarks and AMPGO. http://infinity77.net/global_optimization/test_functions_nd_X.html. Accessed 08 July 2017
  31. Ghate, A.: Dynamic optimization in radiotherapy. In: Transforming Research into Action, pp. 60–74. INFORMS (2011)Google Scholar
  32. Glover, F., Kochenberger, G.A.: Handbook of Metaheuristics. Springer, New York (2003)zbMATHGoogle Scholar
  33. Glover, F., Laguna, M.: Tabu search foundations: longer term memory. In: Tabu Search, pp. 93–124. Springer, Boston (1997)Google Scholar
  34. Hamadneh, N.N., Tilahun, S.L., Sathasivam, S., Choon, O.H.: Prey-predator algorithm as a new optimization technique using in radial basis function neural networks. Res. J. Appl. Sci. 8(7), 383–387 (2013)Google Scholar
  35. Hamadneh, N.N., Khan, W., Tilahun, S.L.: Optimization of microchannel heat sinks using prey-predator algorithm and artificial neural networks. Machines 6(2), 26 (2018)Google Scholar
  36. Hartmann, D.: Optimierung Balkenartiger Zylindeerschalen aus Stahlbeton mit Elastischem und Plastischem Werkstoffverhalten. Ph.D. Thesis, University of Dortmund (1974)Google Scholar
  37. Havens, T.C., Spain, C.J., Salmon, N.G., Keller, J.M.: Roach infestation optimization. In: Proceedings of the IEEE Swarm Intelligence Symposium (SIS 2008), pp. 1–7 (2008)Google Scholar
  38. Hock, W., Schittkowski, K.: Test examples for nonlinear programming codes. J. Optim. Theory Appl. 30(1), 127–129 (1980)zbMATHGoogle Scholar
  39. Holland, J.H.: Adaptation in Natural and Artificial Systems. University of Michigan Press, Ann Arbor (1975)Google Scholar
  40. Jones, D.F., Mirrazavi, S.K., Tamiz, M.: Multi-objective meta-heuristics: an overview of the current state-of-the-art. Eur. J. Oper. Res. 137, 1–9 (2002)zbMATHGoogle Scholar
  41. Kamien, M.I., Schwartz, N.L.: Dynamic Optimization: the Calculus of Variations and Optimal Control in Economics and Management. Courier Corporation, North Chelmsford (2012)zbMATHGoogle Scholar
  42. Karaboga, D.: An Idea Based on Honey Bee Swarm for Numerical Optimization, Vol. 200. Technical Report-tr06, Erciyes University, Engineering Faculty, Computer Engineering Department (2005)Google Scholar
  43. Karaboga, D., Basturk, B.: A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm. J. Glob. Optim. 39, 459–471 (2007)MathSciNetzbMATHGoogle Scholar
  44. Karaboga, D., Akay, B.: A comparative study of artificial bee colony algorithm. Appl. Math. Comput. 214, 108–132 (2009)MathSciNetzbMATHGoogle Scholar
  45. Kelemen, A., Abraham, A., Chen, Y. (eds.): Computational Intelligence in Bioinformatics, vol. 94. Springer, Berlin (2008)Google Scholar
  46. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of IEEE International Conference on Neural Networks, pp. 1942–1948. Perth (1995)Google Scholar
  47. Khan, W.A, Hamadneh, N.N., Tilahun S.L., Ngnotchouye, J.M.T.: A review and comparative study of firefly algorithm and its modified versions. In: Ozgur Baskan (ed.) Chapter 13 of Optimization Algorithms Methods and Applications. InTech (2016). https://doi.org/10.5772/62472
  48. Krishnan, K., Ghose, D.: Detection of multiple source locations using a glow-worm metaphor with applications to collective robotics. In: Proceedings of the IEEE Swarm Intelligence Symposium, pp. 84–91 (2005)Google Scholar
  49. Krause, J., Cordeiro, J., Parpinelli, R.S., Lopes, H.S.: A survey of swarm algorithms applied to discrete optimization problems. In: Swarm Intelligence and Bio-inspired Computation: Theory and Applications, pp. 169–191. Elsevier Science and Technology Books (2013)Google Scholar
  50. Li, X.-L., Lu, F., Tian, G.-H., Qian, J.-X.: Applications of artificial fish school algorithm in combinatorial optimization problems. J. Shandong Univ. Eng. Sci. 34, 64–67 (2004)Google Scholar
  51. Liang, J.J., Runarsson, T.P., Mezura-Montes, E., Clerc, M., Suganthan, P.N., Coello, C.C., Deb, K.: Problem definitions and evaluation criteria for the CEC 2006 special session on constrained real-parameter optimization. J. Appl. Mech. 41(8), 8–31 (2006)Google Scholar
  52. Liang, J.J., Qu, B.Y., Suganthan, P.N.: Problem definitions and evaluation criteria for the CEC 2014 special session and competition on single objective real-parameter numerical optimization. In: Computational Intelligence Laboratory. Zhengzhou University, Zhengzhou China and Technical Report, Nanyang Technological University, Singapore (2013)Google Scholar
  53. Lu, X., Zhou, Y.: A novel global convergence algorithm: bee collecting pollen algorithm. In: Advanced Intelligent Computing Theories and Applications with Aspects of Artificial Intelligence, pp. 518–525. Springer, Berlin (2008)Google Scholar
  54. Lucic, P., Teodorovic, D.: Transportation modeling: an artificial life approach (ICTAI 2002). In: Proceedings of the 14th IEEE International Conference on Tools with Artificial Intelligence, pp. 216–223 (2002)Google Scholar
  55. Manzini, R., Bindi, F.: Strategic design and operational management optimization of a multi stage physical distribution system. Transp. Res. Part E: Logist. Transp. Rev. 45(6), 915–936 (2009)Google Scholar
  56. Martens, D., Baesens, B., Fawcett, T.: Editorial survey: swarm intelligence for data mining. Mach. Learn. 82(1), 1–42 (2011)MathSciNetGoogle Scholar
  57. Martin, R., Stephen W.: Termite: A swarm intelligent routing algorithm for mobilewireless Ad-Hoc networks. In: Stigmergic Optimization. Studies in Computational Intelligence, vol 31. Springer, Berlin, Heidelberg (2006)Google Scholar
  58. Mehrotra, A., Johnson, E.L., Nemhauser, G.L.: An optimization based heuristic for political districting. Manag. Sci. 44(8), 1100–1114 (1998)zbMATHGoogle Scholar
  59. Michalewicz, Z., Schoenauer, M.: Evolutionary algorithms for constrained parameter optimization problems. Evol. Comput. 4(1), 1–32 (1996)Google Scholar
  60. Molga, M., Smutnicki, C.: Test functions for optimization needs. In: Test Functions for Optimization Needs (2005)Google Scholar
  61. Mucherino, A., Seref, O.: Monkey Search: A Novel Metaheuristic Search for Global Optimization, Data Mining, Systems Analysis and Optimization in Biomedicine, pp. 162–173. American Institute of Physics, New York (2007)Google Scholar
  62. Olsson, A.E.: Particle Swarm Optimization: Theory, Techniques and Applications. Nova Science Publishers, Inc. (2010)Google Scholar
  63. Ong, H.C., Tilahun, S.L., Tang, S.S.: A comparative study on standard, modified and chaotic firefly algorithms. Pertanika J. Sci. Technol. 23(2), 251–269 (2015)Google Scholar
  64. Ong, H. C., Tilahun, S. L., Lee, W. S., Ngnotchouye, J. M. T.: Comparative study of prey predator algorithm and firefly algorithm. Intelli. Autom. Soft Computi. pp. 1–8 (2017).  https://doi.org/10.1080/10798587.2017.1294811
  65. Ozcan, E., Misir, M., Ochoa, G., Burke, E.: A reinforcement learning: great-deluge hyper-heuristic for examination timetabling. Int. J. Appl. Metaheur. Comput. 1(1), 40–60 (2010)Google Scholar
  66. Pacini, E., Mateos, C., Garino, C.G.: Distributed job scheduling based on swarm intelligence: a survey. Comput. Electr. Eng. 40(1), 252–269 (2014)Google Scholar
  67. Pan, W.-T.: A new fruit fly optimization algorithm: taking the financial distress model as an example. Knowl Based Syst. 26, 69–74 (2012)Google Scholar
  68. Panigrahi, B.K., Shi, Y., Lim, M.H. (eds.): Handbook of Swarm Intelligence: Concepts, Principles and Applications, vol. 8. Springer, Berlin (2011)zbMATHGoogle Scholar
  69. Passino, K.M.: Bacterial foraging optimization. Int. J. Swarm Intell. Res. (IJSIR) 1, 1–16 (2010)Google Scholar
  70. Patnaik, S., Yang, X.S., Nakamatsu, K. (eds.): Nature-Inspired Computing and Optimization: Theory and Applications, vol. 10. Springer, Berlin (2017)zbMATHGoogle Scholar
  71. Pham, D., Ghanbarzadeh, A., Koc, E., Otri, S., Rahim, S., Zaidi, M.: The bees algorithm: a novel tool for complex optimisation problems. In: Proceedings of the 2nd Virtual International Conference on Intelligent Production Machines and Systems (IPROMS 2006), pp. 454–459 (2006)Google Scholar
  72. Pinto, P.C., Runkler, T.A., Sousa, J.M.: Wasp swarm algorithm for dynamic MAX-SAT problems. In: Adaptive and Natural Computing Algorithms, pp. 350–357. Springer, Berlin (2007)Google Scholar
  73. Piotrowski, A.P., Napiorkowski, J.J., Rowinski, P.M.: How novel is the novel black hole optimization approach? Inf. Sci. 267, 191–200 (2014)Google Scholar
  74. Rashedi, E., Nezamabadi-pour, H., Saryazdi, S.: GSA: a gravitational search algorithm. Inf. Sci. 179, 2232–2248 (2009)zbMATHGoogle Scholar
  75. Rashedi, E., Nezamabadi-pour, H., Saryazdi, S.: BGSA: binary gravitational search algorithm. Nat. Comput. 9, 727–745 (2010)MathSciNetzbMATHGoogle Scholar
  76. Rechenberg, I.: Evolutionsstrategie: Optimierung Technischer Systeme nach Prinzipien der Biologischen Evolution. Frommann-Holzboog, Stuttgart (1973)Google Scholar
  77. Saleem, M., Di Caro, G.A., Farooq, M.: Swarm intelligence based routing protocol for wireless sensor networks: survey and future directions. Inf. Sci. 181(20), 4597–4624 (2011)Google Scholar
  78. Schwefel, H.-P.: Evolutionsstrategie und Numerische Optimierung, Dissertation, Technical University of Berlin (1975)Google Scholar
  79. Schwefel, H.-P.: Binre Optimierung durch Somatische Mutation, Technical Report, Technical University of Berlin and Medical University of Hannover (1975)Google Scholar
  80. Shi, Y.: Particle swarm optimization: developments, applications and resources. In: Proceedings of the 2001 Congress on Evolutionary Computation, Vol. 1, pp. 81–86. IEEE (2001)Google Scholar
  81. Shiqin, Y., Jianjun, J., Guangxing, Y.: A dolphin partner optimization. In: IEEE WRI Global Congress on Intelligent Systems (GCIS’09), pp. 124–128 (2009)Google Scholar
  82. Srensen, K.: Metaheuristicsthe metaphor exposed. Int. Trans. Oper. Res. 22(1), 3–18 (2015)MathSciNetGoogle Scholar
  83. Sttzle, T., Hoos, H.H.: Maximin ant system. Future Gener. Comput. Syst. 16, 889–914 (2000)Google Scholar
  84. Suganthan, P.N., Hansen, N., Liang, J.J., Deb, K., Chen, Y.P., Auger, A., Tiwari, S.: Problem definitions and evaluation criteria for the CEC 2005 special session on real-parameter optimization. KanGAL Report, 2005 (2005)Google Scholar
  85. Taylor, Christine Pia: Integrated Transportation System Design Optimization. Dissertation, Massachusetts Institute of Technology (2007)Google Scholar
  86. Tawhid, M.A., Ali, A.F.: A Hybrid grey wolf optimizer and genetic algorithm for minimizing potential energy function. Memet. Comput. 9, 347–359 (2017)Google Scholar
  87. Tilahun, S.L., Asfaw, A.: Modeling the expansion of Prosopis juliflora and determining its optimum utilization rate to control the invasion in Afar Regional State of Ethiopia. Int. J. Appl. Math. Res. 1(4), 726–743 (2012)Google Scholar
  88. Tilahun, S.L., Ong, H.C.: Modified firefly algorithm. J. Appl. Math. 2012, Article ID 467631 (2012)Google Scholar
  89. Tilahun, S.L., Ong, H.C.: Comparison between genetic algorithm and prey-predator algorithm. Mal. J. Fund. Appl. Sci. 9(4), 167–170 (2013a)Google Scholar
  90. Tilahun, S.L., Ong, H.C.: Vector optimisation using fuzzy preference in evolutionary strategy based firefly algorithm. Int. J. Oper. Res. 16(1), 81–95 (2013b)MathSciNetzbMATHGoogle Scholar
  91. Tilahun, S.L.: Prey Predator Algorithm: A New Metaheuristic Optimization Approach. A Thesis submitted to School of Mathematical Sciences, Universiti Sains Malaysia, as a partial fulfilment for Ph.D. Degree (2013)Google Scholar
  92. Tilahun, S.L., Ong, H.C.: Prey predator algorithm: a new metaheuristic optimization algorithm. Int. J. Inf. Technol. Decis. Mak. 14, 1331–1352 (2015)Google Scholar
  93. Tilahun, S.L., Ong, H.C., Ngnotchouye, J.M.T.: Extended prey-predator algorithm with a group hunting scenario. Adv. Oper. Res. 2016, 1–14 (2016)MathSciNetzbMATHGoogle Scholar
  94. Tilahun, S.L., Ngnotchouye, J.M.T.: Prey predator algorithm with adaptive step length. Int. J. Bio-Inspir. Comput. 8(4), 195–204 (2016)Google Scholar
  95. Tilahun, S.L., Ngnotchouye, J.M.T.: Firefly algorithm for discrete optimization problems: a survey. KSCE J. Civ. Eng. 21(2), 535–545 (2017)Google Scholar
  96. Tilahun, S.L., Ngnotchouye, J.M.T., Hamadneh, N.N.: Continuous versions of firefly algorithm: a review. Artif. Intell. Rev. pp. 1–48 (2017).  https://doi.org/10.1007/s10462-017-9568-0
  97. Tilahun, S.L.: Prey predator hyperheuristic. Appl. Soft Comput. 59, 104–114 (2017)Google Scholar
  98. Tilahun, S.L., Goshu, N.N., Ngnotchouye, J.M.T.: Prey predator algorithm for travelling salesman problem: application on the Ethiopian tourism sites. In: Handbook of Research on Holistic Optimization Techniques in the Hospitality, Tourism, and Travel Industry, pp. 400–422. IGI Global (2017)Google Scholar
  99. Tilahun, S.L., Matadi, M.B.: Weight minimization of a speed reducer using prey predator algorithm. Int. J. Manuf. Mater. Mech. Eng. (IJMMME) 8(2), 19–32 (2018)Google Scholar
  100. Toklu, Y.C.: Metaheuristics and engineering. In: AIP Conference Proceedings, Vol. 1558, No. 1, pp. 421–424. AIP (2013)Google Scholar
  101. Villegas, J.G.: Using nonparametric test to compare the performance of metaheuristics. https://juangvillegas.les.wordpress.com/2011/08/friedman-test24062011.pdf. Retrieved June 2017 (2011)
  102. Yang, X.-S.: Firefly algorithm. In: Nature-inspired Metaheuristic Algorithms. Luniver Press, Bristol (2008)Google Scholar
  103. Yang, X.-S.: A New Metaheuristic Bat-Inspired Algorithm, Nature Inspired Cooperative Strategies For Optimization (NICSO 2010), pp. 65–74. Springer, Berlin (2010)Google Scholar
  104. Yang, X.S., Cui, Z., Xiao, R., Gandomi, A.H., Karamanoglu, M. (eds.): Swarm Intelligence and Bio-inspired Computation: Theory and Applications. Newnes, Oxford (2013)Google Scholar
  105. Yang, X.-S., Deb, S.: Cuckoo search via Lvy flights. (NaBIC 2009). In: IEEE World Congress on Nature and Biologically Inspired Computing, pp. 210–214 (2009)Google Scholar
  106. Yang, X.-S., He, X.: Firefly algorithm: Recent advances and applications? Int. J. Swarm Intell. 1(1), 36–50 (2013).  https://doi.org/10.1504/IJSI.2013.055801 Google Scholar
  107. Ye, Z., Hu, Z., Lai, X., Chen, H.: Image segmentation using thresholding and swarm intelligence. J. Softw. 7(5), 1074–1082 (2012)Google Scholar
  108. Zhao, D., Dai, Y., Zhang, Z.: Computational intelligence in urban traffic signal control: a survey. IEEE Trans Syst Man Cybern Part C Appl Rev 42(4), 485–494 (2012)Google Scholar
  109. Zhang, S., Lee, C.K., Chan, H.K., Choy, K.L., Wu, Z.: Swarm intelligence applied in green logistics: a literature review. Eng. Appl. Artif. Intell. 37, 154–169 (2015)Google Scholar
  110. Vasant, P.M. (ed.): Meta-Heuristics Optimization Algorithms in Engineering, Business, Economics, and Finance. IGI Global, Hershey (2012)Google Scholar
  111. Wang, D., Tan, D., Liu, L.: Particle swarm optimization algorithm: an overview. Soft Comput. 22, 387–408 (2017)Google Scholar
  112. Wang, Y., Wang, B.C., Li, H.X., Yen, G.G.: Incorporating objective function information into the feasibility rule for constrained evolutionary optimization. IEEE Trans. Cybern. 46, 2938–2952 (2016).  https://doi.org/10.1109/TCYB.2015.2493239 Google Scholar
  113. Weyland, D.: A rigorous analysis of the harmony search algorithm: how the research community can be. In: Modeling, Analysis, and Applications in Metaheuristic Computing: Advancements and Trends: Advancements and Trends, vol. 72 (2012)Google Scholar
  114. Wu, S.X., Banzhaf, W.: The use of computational intelligence in intrusion detection systems: a review. Appl. Soft Comput. 10(1), 1–35 (2010)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Surafel Luleseged Tilahun
    • 1
    • 2
    Email author
  • Mohamed A. Tawhid
    • 3
    • 4
  1. 1.Department of Mathematical SciencesUniversity of ZululandKwaDlangezwaSouth Africa
  2. 2.Computational Science Program, College of Natural SciencesAddis Ababa UniversityAddis AbabaEthiopia
  3. 3.Department of Mathematics and Statistics, Faculty of ScienceThompson Rivers UniversityKamloopsCanada
  4. 4.Department of Mathematics and Computer Science, Faculty of ScienceAlexandria UniversityAlexandriaEgypt

Personalised recommendations