Advertisement

A variable neighborhood search simheuristic for project portfolio selection under uncertainty

  • Javier Panadero
  • Jana Doering
  • Renatas Kizys
  • Angel A. Juan
  • Angels Fito
Article

Abstract

With limited financial resources, decision-makers in firms and governments face the task of selecting the best portfolio of projects to invest in. As the pool of project proposals increases and more realistic constraints are considered, the problem becomes NP-hard. Thus, metaheuristics have been employed for solving large instances of the project portfolio selection problem (PPSP). However, most of the existing works do not account for uncertainty. This paper contributes to close this gap by analyzing a stochastic version of the PPSP: the goal is to maximize the expected net present value of the inversion, while considering random cash flows and discount rates in future periods, as well as a rich set of constraints including the maximum risk allowed. To solve this stochastic PPSP, a simulation-optimization algorithm is introduced. Our approach integrates a variable neighborhood search metaheuristic with Monte Carlo simulation. A series of computational experiments contribute to validate our approach and illustrate how the solutions vary as the level of uncertainty increases.

Keywords

Project portfolio selection Stochastic optimization Net present value Variable neighborhood search Simheuristics 

Notes

Acknowledgements

This work has been partially supported by the Spanish Ministry of Economy and Competitiveness (TRA2013-48180-C3-P, TRA2015-71883-REDT), FEDER. and the Erasmus+ programme (20161ES01KA108023465).

References

  1. Azizi, N., Zolfaghari, S.: Adaptive temperature control for simulated annealing: a comparative study. Comput. Oper. Res. 31(14), 2439–2451 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  2. Carazo, A.F., Gómez, T., Molina, J., Hernández-Díaz, A.G., Guerrero, F.M., Caballero, R.: Solving a comprehensive model for multiobjective project portfolio selection. Comput. Oper. Res. 37(4), 630–639 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  3. Coldrick, S., Longhurst, P., Ivey, P., Hannis, J.: An R&D options selection model for investment decisions. Technovation 25(3), 185–193 (2005)CrossRefGoogle Scholar
  4. Cruz, L., Fernandez, E., Gomez, C., Rivera, G., Perez, F.: Many-objective portfolio optimization of interdependent projects with ‘a priori’ incorporation of decision-maker preferences. Appl. Math. Inf. Sci. 8(4), 1517–1531 (2014)CrossRefGoogle Scholar
  5. Doerner, K., Gutjahr, W.J., Hartl, R.F., Strauss, C., Stummer, C.: Pareto ant colony optimization: a metaheuristic approach to multiobjective portfolio selection. Ann. Oper. Res. 131(1–4), 79–99 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  6. Doerner, K.F., Gutjahr, W.J., Hartl, R.F., Strauss, C., Stummer, C.: Pareto ant colony optimization with ILP preprocessing in multiobjective project portfolio selection. Eur. J. Oper. Res. 171(3), 830–841 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  7. Fernandez, E., Gomez, C., Rivera, G., Cruz-Reyes, L.: Hybrid metaheuristic approach for handling many objectives and decisions on partial support in project portfolio optimisation. Inf. Sci. 315, 102–122 (2015)MathSciNetCrossRefGoogle Scholar
  8. Gabriel, S.A., Kumar, S., Ordòñez, J., Nasserian, A.: A multiobjective optimization model for project selection with probabilistic considerations. Socio-Econ. Plan. Sci. 40(4), 297–313 (2006)CrossRefGoogle Scholar
  9. Ghasemzadeh, F., Archer, N.: Project portfolio selection through decision support. Decis. Support Syst. 29(1), 73–88 (2000)CrossRefGoogle Scholar
  10. Grasas, A., Juan, A.A., Faulin, J., de Armas, J., Ramalhinho, H.: Biased randomization of heuristics using skewed probability distributions: a survey and some applications. Comput. Ind. Eng. 110, 216–228 (2017)CrossRefGoogle Scholar
  11. Gutjahr, W.J., Katzensteiner, S., Reiter, P., Stummer, C., Denk, M.: Competence-driven project portfolio selection, scheduling and staff assignment. CEJOR 16(3), 281–306 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  12. Gutjahr, W.J., Katzensteiner, S., Reiter, P., Stummer, C., Denk, M.: Multi-objective decision analysis for competence-oriented project portfolio selection. Eur. J. Oper. Res. 205(3), 670–679 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  13. Hansen, P., Mladenović, N.: Variable neighborhood search: principles and applications. Eur. J. Oper. Res. 130(3), 449–467 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  14. Hansen, P., Mladenović, N.: Variable neighborhood search. In: Burke, E., Kendall, G. (eds.) Search Methodologies, pp. 313–337. Springer, Berlin (2014)CrossRefGoogle Scholar
  15. Hansen, P., Mladenović, N., et al.: Variable neighborhood search. Eur. J. Oper. Res. 191(3), 593–595 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  16. Höller, H., Melián, B., Voß, S.: Applying the pilot method to improve VNS and GRASP metaheuristics for the design of SDH/WDM networks. Eur. J. Oper. Res. 191(3), 691–704 (2008)CrossRefzbMATHGoogle Scholar
  17. Huang, X.: Optimal project selection with random fuzzy parameters. Int. J. Prod. Econ. 106(2), 513–522 (2007)CrossRefGoogle Scholar
  18. Juan, A.A., Faulin, J., Ferrer, A., Lourenço, H.R., Barrios, B.: Mirha: multi-start biased randomization of heuristics with adaptive local search for solving non-smooth routing problems. Top 21(1), 109–132 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  19. Juan, A.A., Faulin, J., Grasman, S.E., Rabe, M., Figueira, G.: A review of simheuristics: extending metaheuristics to deal with stochastic combinatorial optimization problems. Oper. Res. Perspect. 2, 62–72 (2015a)MathSciNetCrossRefGoogle Scholar
  20. Juan, A.A., Pascual, I., Guimarans, D., Barrios, B.: Combining biased randomization with iterated local search for solving the multidepot vehicle routing problem. Int. Trans. Oper. Res. 22(4), 647–667 (2015b)MathSciNetCrossRefzbMATHGoogle Scholar
  21. Kiesling, E., Ekelhart, A., Grill, B., Strauss, C., Stummer, C.: Selecting security control portfolios: a multi-objective simulation-optimization approach. EURO J. Decis. Process. 4(1–2), 85–117 (2016)CrossRefGoogle Scholar
  22. Liesiö, J., Mild, P., Salo, A.: Preference programming for robust portfolio modeling and project selection. Eur. J. Oper. Res. 181(3), 1488–1505 (2007)CrossRefzbMATHGoogle Scholar
  23. Liesiö, J., Mild, P., Salo, A.: Robust portfolio modeling with incomplete cost information and project interdependencies. Eur. J. Oper. Res. 190(3), 679–695 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  24. Medaglia, A.L., Graves, S.B., Ringuest, J.L.: A multiobjective evolutionary approach for linearly constrained project selection under uncertainty. Eur. J. Oper. Res. 179(3), 869–894 (2007)CrossRefzbMATHGoogle Scholar
  25. Melián, B.: Using memory to improve the VNS metaheuristic for the design of SDH/WDM networks. In: Proceedings of the Third International Conference on Hybrid Metaheuristics, HM’06, pp. 82–93. Springer, Berlin (2006)Google Scholar
  26. Mladenović, N., Hansen, P.: Variable neighborhood search. Comput. Oper. Res. 24(11), 1097–1100 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  27. Moreno-Vega, J.M., Melián, B.: Introduction to the special issue on variable neighborhood search. J. Heuristics 14(5), 403–404 (2008)CrossRefzbMATHGoogle Scholar
  28. Nikolaev, A.G., Jacobson, S.H.: Simulated annealing. In: Gendreau, M., Potvin, J.-Y. (eds.) Handbook of Metaheuristics, volume 146 of International Series in Operations Research & Management Science, 2nd edn, pp. 1–39. Springer, New York (2010)Google Scholar
  29. Patrick, H.T.: Financial development and economic growth in underdeveloped countries. Econ. Dev. Cult. Change 14(2), 174–189 (1966)CrossRefGoogle Scholar
  30. Rabbani, M., Aramoon Bajestani, M., Baharian Khoshkhou, G.: A multi-objective particle swarm optimization for project selection problem. Expert Syst. Appl. 37(1), 315–321 (2010)CrossRefGoogle Scholar
  31. Rooderkerk, R.P., van Heerde, H.J.: Robust optimization of the 0–1 knapsack problem: balancing risk and return in assortment optimization. Eur. J. Oper. Res. 250(3), 842–854 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  32. Schmidt, R.L.: A model for R & D project selection with combined benefit, outcome and resource interactions. IEEE Trans. Eng. Manage. 40(4), 403–410 (1993)CrossRefGoogle Scholar
  33. Soler-Dominguez, A., Juan, A., Kizys, R.: A survey on financial applications of metaheuristics. ACM Comput. Surv. 50, 1–23 (2017)CrossRefGoogle Scholar
  34. Stummer, C., Sun, M.: New multiobjective metaheuristic solution procedures for capital investment planning. J. Heuristics 11(3), 183–199 (2005)CrossRefGoogle Scholar
  35. Suh, C.-K., Suh, E.-H., Baek, K.-C.: Prioritizing telecommunications technologies for long-range R&D planning to the year 2006. IEEE Trans. Eng. Manag. 41(3), 264–275 (1994)CrossRefGoogle Scholar
  36. Tricoire, F.: Multi-directional local search. Comput. Oper. Res. 39(12), 3089–3101 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  37. Urli, B., Terrien, F.: Project portfolio selection model, a realistic approach. Int. Trans. Oper. Res. 17(6), 809–826 (2010)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.IN3 - Computer Science DepartmentOpen University of CataloniaBarcelonaSpain
  2. 2.Economics and Business DepartmentUniversitat Oberta de CatalunyaBarcelonaSpain
  3. 3.Economics and Finance Subject Group, Portsmouth Business SchoolUniversity of PortsmouthPortsmouthUK

Personalised recommendations