A general variable neighborhood search for solving the multi-objective open vehicle routing problem

  • Jesús Sánchez-OroEmail author
  • Ana D. López-Sánchez
  • J. Manuel Colmenar


The multi-objective open vehicle routing problem (MO-OVRP) is a variant of the classic vehicle routing problem in which routes are not required to return to the depot after completing their service and where more than one objective is optimized. This work is intended to solve a more realistic and general version of the problem by considering three different objective functions. MO-OVRP seeks solutions that minimize the total number of routes, the total travel cost, and the longest route. For this purpose, we present a general variable neighborhood search algorithm to approximate the efficient set. The performance of the proposal is supported by an extensive computational experimentation which includes the comparison with the well-known multi-objective genetic algorithm NSGA-II.


General variable neighborhood search NSGA-II Open vehicle routing problem Sweep algorithm Local search Multi-objective optimization 



J. M. Colmenar and J. Sánchez-Oro are supported by the Spanish Ministry of “Economía y Competitividad”, Grant Refs. TIN2015-65460-C2-2-P and TIN2014-54806-R. A.D. López-Sánchez acknowledge support from the Spanish Ministry of Science and Innovation through Projects ECO2013-47129-C4-1-R and ECO2016-76567-C4-1-R.


  1. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evolut. Comput. 6(2), 182–197 (2002)CrossRefGoogle Scholar
  2. Duarte, A., Pantrigo, J., Pardo, E., Sánchez Oro, J.: Parallel variable neighbourhood search strategies for the cutwidth minimization problem. IMA J. Manag. Math. 27(1), 55 (2016)MathSciNetCrossRefGoogle Scholar
  3. Eiben, A.E., Smith, J.E.: Introduction to evolutionary computing (2003)Google Scholar
  4. Fu, Z., Eglese, R., Li, L.Y.O.: A new tabu search heuristic for the open vehicle routing problem. J. Oper. Res. Soc. 56(3), 267–274 (2005)CrossRefzbMATHGoogle Scholar
  5. Gillett, B., Miller, L.: A heuristic algorithm for the vehicle-dispatch problem. Oper. Res. 22(2), 340–349 (1974)CrossRefzbMATHGoogle Scholar
  6. Hansen, P., Mladenović, N.: Variable neighborhood search: principles and applications. Eur. J. Oper. Res. 130(3), 449–467 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  7. Hansen, P., Mladenović, N., Todosijević, R., Hanafi, S.: Variable neighborhood search: basics and variants. EURO J. Comput. Optim. 5(3), 423–454 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  8. López Sánchez, A.D., Hernández Díaz, A.G., Vigo, D., Caballero, R., Molina, J.: A multi-start algorithm for a balanced real-world open vehicle routing problem. Eur. J. Oper. Res. 238(1), 104–113 (2014)CrossRefzbMATHGoogle Scholar
  9. Mladenović, N., Hansen, P.: Variable neighborhood search. Comput. Oper. Res. 24(11), 1097–1100 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  10. Norouzi, N., Tavakkoli Moghaddam, R., Ghazanfari, M., Alinaghian, M., Salamatbakhsh, A.: A new multi-objective competitive open vehicle routing problem solved by particle swarm optimization. Netw. Spat. Econ. 12(4), 609–633 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  11. Sánchez Oro, J., Pantrigo, J.J., Duarte, A.: Combining intensification and diversification strategies in VNS. An application to the Vertex Separation problem. Comput. Oper. Res. 52(Part B), 209–219 (2014). Recent advances in Variable neighborhood searchMathSciNetCrossRefzbMATHGoogle Scholar
  12. Sánchez Oro, J., Sevaux, M., Rossi, A., Martí, R., Duarte, A.: Solving dynamic memory allocation problems in embedded systems with parallel variable neighborhood search strategies. Electron. Notes Discret. Math. 47, 85–92 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  13. Schrage, L.: Formulation and structure of more complex/realistic routing and scheduling problems. Networks 11(2), 229–232 (1981)CrossRefGoogle Scholar
  14. Tarantilis, C.D., Ioannou, G., Kiranoudis, C.T., Prastacos, G.P.: Solving the open vehicle routeing problem via a single parameter metaheuristic algorithm. J. Oper. Res. Soc. 56(5), 588–596 (2005)CrossRefzbMATHGoogle Scholar
  15. Toth, P., Vigo, D. (eds.): The Vehicle Routing Problem. Society for Industrial and Applied Mathematics, Philadelphia, PA, USA (2002)Google Scholar
  16. We, Z., Tingxin, S., Fei, H., Xi, L.: Multiobjective Vehicle Routing Problem with Route Balance Based on Genetic Algorithm. Discrete Dynamics in Nature and Society 2013(Article ID 325686), 9 (2013)Google Scholar
  17. Zitzler, E.: Evolutionary algorithms for multiobjective optimization: methods and applications. PhD Thesis, Swiss Federal Institute of Technology Zurich (1999)Google Scholar
  18. Zitzler, E., Thiele, L.: Multiobjective Optimization Using Evolutionary Algorithms—A comparative case study, pp. 292–301. Springer, Berlin, Heidelberg (1998)Google Scholar
  19. Zitzler, E., Thiele, L., Laumanns, M., Fonseca, C.M., da Fonseca, V.G.: Performance assessment of multiobjective optimizers: an analysis and review. Trans. Evol. Comp 7(2), 117–132 (2003)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Rey Juan Carlos UniversityMóstolesSpain
  2. 2.Pablo de Olavide UniversitySevillaSpain

Personalised recommendations