Advertisement

Iterated backtrack removal search for finding k-vertex-critical subgraphs

  • Wen Sun
  • Jin-Kao Hao
  • Alexandre Caminada
Article
  • 98 Downloads

Abstract

Given an undirected graph \(G = (V,E)\) and a positive integer k, a k-vertex-critical subgraph (k-VCS) of G is a subgraph H such that its chromatic number equals k (i.e., \(\chi (H) = k\)), and removing any vertex causes a decrease of \(\chi (H)\). The k-VCS problem (k-VCSP) is to find the smallest k-vertex-critical subgraph \(H^*\) of G. This paper proposes an iterated backtrack-based removal (IBR) heuristic to find k-VCS for a given graph G. IBR extends the popular removal strategy that is intensification-oriented. The proposed extensions include two new diversification-oriented search components—a backtracking mechanism to reconsider some removed vertices and a perturbation strategy to escape local optima traps. Computational results on 80 benchmark graphs show that IBR is very competitive in terms of solution quality and run-time efficiency compared with state-of-the-art algorithms in the literature. Specifically, IBR improves the best-known solutions for 9 graphs and matches the best results for other 70 instances. We investigate the interest of the key components of the proposed algorithm.

Keywords

Vertex-critical subgraph Graph coloring Tabu search Backtracking-based diversification Irreducibly inconsistent systems 

Notes

Acknowledgements

We are grateful to Dr. Chumin Li for providing us with the code of Zhou et al. (2014). Support for the first author of this work from the China Scholarship Council (2015–2019) is also acknowledged.

References

  1. Chakravarti, N.: Some results concerning post-infeasibility analysis. Eur. J. Oper. Res. 73(1), 139–143 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  2. Chinneck, J.W.: Minos (IIS): infeasibility analysis using minos. Comput. Oper. Res. 21(1), 1–9 (1994)CrossRefzbMATHGoogle Scholar
  3. Chinneck, J.W.: Finding a useful subset of constraints for analysis in an infeasible linear program. INFORMS J. Comput. 9(2), 164–174 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  4. Chinneck, J.W., Dravnieks, E.W.: Locating minimal infeasible constraint sets in linear programs. ORSA J. Comput. 3(2), 157–168 (1991)CrossRefzbMATHGoogle Scholar
  5. Desrosiers, C., Galinier, P., Hertz, A.: Efficient algorithms for finding critical subgraphs. Discrete Appl. Math. 156(2), 244–266 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  6. Desrosiers, C., Galinier, P., Hertz, A., Paroz, S.: Using heuristics to find minimal unsatisfiable subformulas in satisfiability problems. J. Comb. Optim. 18(2), 124–150 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  7. Dorne, R., Hao, J.-K.: A new genetic local search algorithm for graph coloring. Lect. Notes Comput. Sci. 1498, 745–754 (1998)CrossRefGoogle Scholar
  8. Eisenberg, C., Faltings, B.: Using the breakout algorithm to identify hard and unsolvable subproblems. Lect. Notes Comput. Sci. 2833, 822–826 (2003)CrossRefGoogle Scholar
  9. Galinier, P., Hao, J.-K.: Hybrid evolutionary algorithms for graph coloring. J. Comb. Optim. 3(4), 379–397 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  10. Galinier, P., Hertz, A., Zufferey, N.: An adaptive memory algorithm for the k-colouring problem. Discrete Appl. Math. 156(2), 267–279 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  11. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness, vol. 58. Freeman, San Francisco (1979)zbMATHGoogle Scholar
  12. Glover, F.: Tabu search—part I. ORSA J. Comput. 1(3), 190–206 (1989)CrossRefzbMATHGoogle Scholar
  13. Glover, F.: Tabu search—part II. ORSA J. Comput. 2(1), 4–32 (1990)CrossRefzbMATHGoogle Scholar
  14. Glover, F., Lü, Z., Hao, J.-K.: Diversification-driven tabu search for unconstrained binary quadratic problems. 4OR Q. J. Oper. Res. 8(3), 239–253 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  15. Grégoire, E., Mazure, B., Piette, C.: On finding minimally unsatisfiable cores of CSPs. Int. J. Artif. Intell. Tools 17(4), 745–763 (2008)CrossRefGoogle Scholar
  16. Herrmann, F., Hertz, A.: Finding the chromatic number by means of critical graphs. J. Exp. Algorithmics JEA 7, 10 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  17. Hertz, A., de Werra, D.: Using tabu search techniques for graph coloring. Computing 39(4), 345–351 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  18. Johnson, D.S., Aragon, C.R., McGeoch, L.A., Schevon, C.: Optimization by simulated annealing: an experimental evaluation; part I, graph partitioning. Oper. Res. 37(6), 865–892 (1989)CrossRefzbMATHGoogle Scholar
  19. Liffiton, M.H., Sakallah, K.A.: On finding all minimally unsatisfiable subformulas. In: International Conference on Theory and Applications of Satisfiability Testing, pp. 173–186. Springer (2005)Google Scholar
  20. Liffiton, M.H., Sakallah, K.A.: Algorithms for computing minimal unsatisfiable subsets of constraints. J. Autom. Reason. 40(11), 133 (2008)MathSciNetzbMATHGoogle Scholar
  21. Lü, Z., Hao, J.-K.: A critical element-guided perturbation strategy for iterated local search. In: Evolutionary Computation in Combinatorial Optimization, pp. 1–12. Springer (2009)Google Scholar
  22. Lynce, I., Marques-Silva, J.P.: On computing minimum unsatisfiable cores. In: Online Proceedings of The Seventh International Conference on Theory and Applications of Satisfiability Testing (SAT 2004), 10–13 May 2004, Vancouver, BC, Canada (2004)Google Scholar
  23. Mneimneh, M., Lynce, I., Andraus, Z., Marques-Silva, J., Sakallah, K.: A branch-and-bound algorithm for extracting smallest minimal unsatisfiable formulas. In: International Conference on Theory and Applications of Satisfiability Testing, pp. 467–474. Springer (2005)Google Scholar
  24. Oh, Y., Mneimneh, M.N., Andraus, Z.S., Sakallah, K.A., Markov, I.L.: Amuse: a minimally-unsatisfiable subformula extractor. In: Proceedings of the 41st Annual Design Automation Conference, pp. 518–523. ACM (2004)Google Scholar
  25. Tamiz, M., Mardle, S.J., Jones, D.F.: Detecting IIS in infeasible linear programmes using techniques from goal programming. Comput. Oper. Res. 23(2), 113–119 (1996)CrossRefzbMATHGoogle Scholar
  26. van Loon, J.N.M.: Irreducibly inconsistent systems of linear inequalities. Eur. J. Oper. Res. 8(3), 283–288 (1981)MathSciNetCrossRefzbMATHGoogle Scholar
  27. Zhou, Z., Li, C.M., Huang, C., Xu, R.: An exact algorithm with learning for the graph coloring problem. Comput. Oper. Res. 51, 282–301 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  28. Zhou, Y., Hao, J.-K., Glover, F.: Memetic search for identifying critical nodes in sparse graphs (2017a). arXiv:1705.04119
  29. Zhou, Y., Hao, J.-K., Duval, B.: When data mining meets optimization: a case study on the quadratic assignment problem (2017b). arXiv:1708.05214

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.LERIAUniversité d’AngersAngersFrance
  2. 2.Institut Universitaire de FranceParisFrance
  3. 3.UTBMBelfortFrance

Personalised recommendations