Journal of Heuristics

, Volume 23, Issue 6, pp 533–550 | Cite as

A biased random key genetic algorithm applied to the electric distribution network reconfiguration problem

  • H. de FariaJr.
  • M. G. C. Resende
  • D. Ernst


This work presents a biased random-key genetic algorithm (BRKGA) to solve the electric distribution network reconfiguration problem (DNR). The DNR is one of the most studied combinatorial optimization problems in power system analysis. Given a set of switches of an electric network that can be opened or closed, the objective is to select the best configuration of the switches to optimize a given network objective while at the same time satisfying a set of operational constraints. The good performance of BRKGAs on many combinatorial optimization problems and the fact that it has never been applied to solve DNR problems are the main motivation for this research. A BRKGA is a variant of random-key genetic algorithms, where one of the parents used for mating is biased to be of higher fitness than the other parent. Solutions are encoded by using random keys, which are represented as vectors of real numbers in the interval (0,1), thus enabling an indirect search of the solution inside a proprietary search space. The genetic operators do not need to be modified to generate only feasible solutions, which is an exclusive task of the decoder of the problem. Tests were performed on standard distribution systems used in DNR studies found in the technical literature and the performance and robustness of the BRKGA were compared with other GA implementations.


Distribution network reconfiguration Biased random-key genetic algorithms Optimization Power losses 


  1. Aiex, R.M., Resende, M., Ribeiro, C.C.: TTTPLOTS: a perl program to create time-to-target plots. Optim. Lett. 1, 355–366 (2007)CrossRefzbMATHMathSciNetGoogle Scholar
  2. Baran, M.E., Wu, F.F.: Network reconfiguration in distribution systems for loss reduction and load balancing. IEEE Trans. Power Deliv. 2(4), 1401–1407 (1989)CrossRefGoogle Scholar
  3. Bean, J.C.: Genetic algorithms and random keys for sequencing and optimization. ORSA J. Comput. 6, 154–160 (1994)CrossRefzbMATHGoogle Scholar
  4. Braz, H.D.M., Souza, B.A.: Distribution network reconfiguration using genetic algorithms with sequential encoding: subtractive and additive approaches. IEEE Trans. Power Syst. 2(26), 582–593 (2011)CrossRefGoogle Scholar
  5. Carreno, E.M., Romero, R., Padilha-Feltrin, A.: An efficient codification to solve distribution network reconfiguration for loss reduction problem. IEEE Trans. Power Syst. 4(23), 1542–1551 (2008)CrossRefGoogle Scholar
  6. Carreño, E.M., Romero, R., Padilha-Feltrin, A.: An efficient codification to solve distribution network reconfiguration for loss reduction problem. IEEE Trans. Power Syst. 4(23), 1542–1551 (2008)CrossRefGoogle Scholar
  7. Civanlar, S., Grainger, J., Lee, S.: Distribution feeder reconfiguration for loss reduction. IEEE Trans. Power Deliv. 3(3), 1217–1223 (1988)CrossRefGoogle Scholar
  8. Delbem, A.C.B., Carvalho, A.C.P.L.F.D., Policastro, C.A., Pinto, A.K.O., Honda, K., Garcia, A.C.: Node-depth encoding for evolutionary algorithms applied to network design. Proc. GECCO 1, 678–687 (2004)Google Scholar
  9. Enacheanu, B., Raison, B., Caire, R., Devaux, O., Bienia, W., Hadjsaid, N.: Radial network reconfiguration using genetic algorithm based on the matroid theory. IEEE Trans. Power Syst. 1(23), 186–195 (2008)CrossRefGoogle Scholar
  10. Faria Jr., H., Binato, S., Resende, M., Falcão, D.M.: Transmission network design by a greedy randomized adaptive path relinking approach. IEEE Trans. Power Syst. 20, 43–49 (2005)CrossRefGoogle Scholar
  11. Festa, P., Pardalos, P., Pitsoulis, L., Resende, M.: GRASP with path-relinking for the weighted MAXSAT problem. ACM J. Exp Algorithmics 11, 1–16 (2006)zbMATHMathSciNetGoogle Scholar
  12. Gonçalves, J., Resende, M.: Biased random-key genetic algorithms for combinatorial optimization. J. Heuristics 17(5), 487–525 (2010)CrossRefGoogle Scholar
  13. Gonçalves, J.F., Resende, M., Toso, R.F.: An experimental comparison of biased and unbiased random-key genetic algorithms. Pesquisa Oper. 34, 143–164 (2014)CrossRefGoogle Scholar
  14. Lavorato, M., Franco, J.F., Rider, M.J., Romero, R.: Imposing radiality constraints in distribution system optimization problems. IEEE Trans. Power Syst. 1(27), 172–180 (2012)CrossRefGoogle Scholar
  15. Li, Z., Chen, X., Yu, K., Sun, Y., Liu, H.: A hybrid particle swarm optimization approach for distribution network reconfiguration problem. IEEE Power and Energy Society General Meeting—Conversion and Delivery of Electrical Energy in the 21st Century, pp 20–24 (2008)Google Scholar
  16. Nara, K., Shiose, A., Kitagawa, M., Ishihara, T.: Implementation of genetic algorithm for distribution systems loss minimum re-configuration. IEEE Trans. Power Syst. 3(7), 1044–1051 (1992)CrossRefGoogle Scholar
  17. Rama Rao, P.V.V., Sivanagaraju, S.: Radial distribution network reconfiguration for loss reduction and load balancing using plant growth simulation algorithm. Int. J. Electron. Eng. Inform 2(4), 266–277 (2010)CrossRefGoogle Scholar
  18. Ramos, E.R., Expósito, A.G., Santos, J.R., Iborra, F.L.: Path-based distribution network modeling: application to reconfiguration for loss reduction. IEEE Trans. Power Syst. 2(20), 556–564 (2005)CrossRefGoogle Scholar
  19. Roque, L.A.C., Fontes, D.B.M.M., Fontes, F.A.C.C.: A hybrid biased random key genetic algorithm approach for the unit commitment problem. J. Comb. Optim. 28, 140–166 (2014)CrossRefzbMATHMathSciNetGoogle Scholar
  20. Santos, A.C., Delbem, A.C.B., London, J.B.A.Jr, Bretas, N.G.: Node-Depth encoding and multiobjective evolutionary algorithm applied to large-scale distribution system reconfiguration. IEEE Trans. Power Syst. 3(25), 1254–1265 (2010)CrossRefGoogle Scholar
  21. Savier, J.S., Das, D.: Impact of network reconfiguration on loss allocation of radial distribution systems. IEEE Trans. Power Deliv. 4(22), 2473–2480 (2007)CrossRefGoogle Scholar
  22. Schmidt, H.P., Ida, N., Kagan, N., Guaraldo, J.C.: Fast reconfiguration of distribution systems considering loss minimization. IEEE Trans. Power Syst. 3(20), 1311–1319 (2005)CrossRefGoogle Scholar
  23. Spears, W.M., DeJong K.A.: On the virtues of parameterized uniform crossover. In: Proceedings of the Fourth International Conference on Genetic Algorithms, pp. 230–236 (1991)Google Scholar
  24. Swarnkar, A., Gupta, N., Niazi, K.R.: A novel codification for meta-heuristic techniques used in distribution network reconfiguration. Electr. Power Syst. Res. 7(81), 1619–1626 (2011)CrossRefGoogle Scholar
  25. Wang, C., Zhao, A., Dong, H., Li, Z.: An improved immune genetic algorithm for distribution network reconfiguration. In: IEEE International Conference on Information Management (2009)Google Scholar
  26. Wenchuan, M., Jiaju, Q.: An artificial immune algorithm to distribution network reconfiguration. Proc. CSEE 26(17), 25–29 (2006)Google Scholar
  27. Yang, X.S.: Engineering Optimization: An Introduction with Metaheuristic Applications. Wiley, Hoboken (2010)CrossRefGoogle Scholar
  28. Zhang, C.Q., Zhang, J.J., Gu X.H.: The application of hybrid genetic particle swarm optimization algorithm in the distribution network reconfigurations multi-objective optimization. In: Third Int. Conf. on Natural Computation Proceeding, vol. 2, p. 455–459 (2007)Google Scholar
  29. Zhu, J.Z.: Optimal reconfiguration of distribution network using the refined genetic algorithm. Elsevier Elect. Power Syst. Res. 62, 37–42 (2002)CrossRefGoogle Scholar
  30. Zifa, L., Shaoyun, G., Yixin, Y.: A hybrid intelligent algorithm for loss minimum reconfiguration in distribution networks. Proc. CSEE 5(15), 73–78 (2005)Google Scholar
  31. Zimmerman, R.D., Murillo-Sánchez, C.E., Thomas, R.J.: Matpower: steady-state operations, planning and analysis tools for power systems research and education. IEEE Trans. Power Syst. 1(26), 12–19 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.CECSUFABC – Universidade Federal do ABCSanto AndréBrazil
  2. 2.Montefiore Institute, Quartier Polytech 1, 10Université de LiègeLiegeBelgium
  3. 3.Mathematical Optimization and Planning, Amazon.comSeattleUSA

Personalised recommendations