Journal of Heuristics

, Volume 23, Issue 5, pp 285–319 | Cite as

On branching heuristics for the bi-objective 0/1 unidimensional knapsack problem

  • Audrey CerqueusEmail author
  • Xavier Gandibleux
  • Anthony Przybylski
  • Frédéric Saubion


This paper focuses on branching strategies that are involved in branch and bound algorithms when solving multi-objective optimization problems. The choice of the branching variable at each node of the search tree constitutes indeed an important component of these algorithms. In this work we focus on multi-objective knapsack problems. In the literature, branching heuristics used for these problems are static, i.e., the order on the variables is determined prior to the execution. This study investigates the benefit of defining more sophisticated branching strategies. We first analyze and compare a representative set of classic branching heuristics and conclude that none can be identified as the best overall heuristic. Using an oracle, we highlight that combining branching heuristics within the same branch and bound algorithm leads to considerably reduced search trees but induces high computational costs. Based on learning adaptive techniques, we propose then dynamic adaptive branching strategies that are able to select the suitable heuristic to apply at each node of the search tree. Experiments are conducted on the bi-objective 0/1 unidimensional knapsack problem.


Multiple objective combinatorial optimization 0/1 unidimensional knapsack problem Branch and bound Branching heuristics Utilities Adaptive strategies 



This work is supported by the following projects: ANR-09-BLAN-0361 “GUaranteed Efficiency for PAReto optimal solutions Determination (GUEPARD)”, the project LigeRO, and the project ANR/DFG-14-CE35-0034-01 “Exact Efficient Solution of Mixed Integer Programming Problems with Multiple Objective Functions (vOpt)”.


  1. Aneja, Y.P., Nair, K.P.K.: Bicriteria transportation problem. Manag. Sci. 25(1), 73–78 (1979)MathSciNetCrossRefzbMATHGoogle Scholar
  2. Auer, P., Cesa-Bianchi, N., Fischer, P.: Finite-time analysis of the multiarmed bandit problem. Mach. Learn. 47(2–3), 235–256 (2002)CrossRefzbMATHGoogle Scholar
  3. Balafrej, A., Bessière, C., Paparrizou, A.: Multi-armed bandits for adaptive constraint propagation. In: Proceedings of the Twenty-Fourth International Joint Conference on Artificial Intelligence, IJCAI 2015, Buenos Aires, Argentina, July 25–31, 2015, pp. 290–296. AAAI Press (2015)Google Scholar
  4. Bazgan, C., Hugot, H., Vanderpooten, D.: Implementing an efficient FPTAS for the 0–1 multi-objective knapsack problem. Eur. J. Oper. Res. 198(1), 47–56 (2009a)MathSciNetCrossRefzbMATHGoogle Scholar
  5. Bazgan, C., Hugot, H., Vanderpooten, D.: Solving efficiently the 0–1 multi-objective knapsack problem. Comput. Oper. Res. 36, 260–279 (2009b)MathSciNetCrossRefzbMATHGoogle Scholar
  6. Captivo, M.E., Clímaco, Ja, Figueira, J.R., Martins, E., Santos, J.L.: Solving bicriteria 0–1 knapsack problems using a labeling algorithm. Comput. Oper. Res. 30(12), 1865–1886 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  7. Cesa-Bianchi, N., Lugosi, G.: Prediction, Learning, and Games. Cambridge University Press, Cambridge (2006)CrossRefzbMATHGoogle Scholar
  8. Da Costa, L., Fialho, Á., Schoenauer, M., Sebag, M.: Adaptive operator selection with dynamic multi-armed bandits. In: Genetic and Evolutionary Computation Conference, GECCO 2008, Proceedings, Atlanta, GA, USA, July 12–16, 2008, pp. 913–920. ACM (2008)Google Scholar
  9. DaCosta, L., Fialho, A., Schoenauer, M., Sebag, M.: Adaptive operator selection with dynamic multi-armed bandits. In: Proceedings of the 10th annual conference on genetic and evolutionary computation, vol. 5199, pp. 913–920 (2008)Google Scholar
  10. Degoutin, F., Gandibleux, X.: Un retour d’expérience sur la résolution de problèmes combinatoires bi-objectifs. In 5e journée du groupe de travail Programmation Mathématique MultiObjectif (PM20), pp. 74–80 (2002)Google Scholar
  11. Delort, C.: Algorithmes d’énumération implicite pour l’optimisation multi-objectifs exacte : exploration d’ensembles bornant et application aux problèmes de sac à dos et d’affectation. Ph.D. thesis, Université Pierre et Marie Curie Paris VI (2011)Google Scholar
  12. Delort, C., Spanjaard, O.: Using bound sets in multiobjective optimization: Application to the biobjective binary knapsack problem. In: Festa, P., (ed.), SEA, volume 6049 of Lecture Notes in Computer Science, pp. 253–265. Springer (2010)Google Scholar
  13. Ehrgott, M.: Multicriteria Optimization, 2nd edn. Springer, Berlin (2005)zbMATHGoogle Scholar
  14. Ehrgott, M., Gandibleux, X.: A survey and annotated bibliography of multiobjective combinatorial optimization. OR Spectr. 22(4), 425–460 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  15. Ehrgott, M., Gandibleux, X.: Bound sets for biobjective combinatorial optimization problems. Comput. Oper. Res. 34(9), 2674–2694 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  16. Figueira, J.R., Paquete, L., Simões, M., Vanderpooten, D.: Algorithmic improvements on dynamic programming for the bi-objective 0,1 knapsack problem. Comput. Optim. Appl. 56(1), 97–111 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  17. Florios, K., Mavrotas, G., Diakoulaki, D.: Solving multiobjective, multiconstraint knapsack problems using mathematical programming and evolutionary algorithms. Eur. J. Oper. Res. 203(1), 14–21 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  18. Gandibleux, X., Fréville, A.: Tabu search based procedure for solving the 0–1 multiobjective knapsack problem: The two objectives case. J. Heuristics 6, 361–383 (2000)CrossRefzbMATHGoogle Scholar
  19. Gandibleux, X., Perederieieva, O.: Some observations on the bi-objective 01 bi-dimensional knapsack problem. In: IFORS 2011 (19th Triennial Conference of the International Federation of Operational Research Societies). 10–15 July 2011, Melbourne, Australia (2011)Google Scholar
  20. Gavish, B., Pirkul, H.: Efficient algorithms for solving multiconstraint zero-one knapsack problems to optimality. Math. Program. 31, 78–105 (1985)MathSciNetCrossRefzbMATHGoogle Scholar
  21. Glover, F.: A multiphase-dual algorithm for the zero-one integer programming problem. Oper. Res. 13(6), 879–919 (1965)CrossRefzbMATHGoogle Scholar
  22. Goldberg, D.E.: Probability matching, the magnitude of reinforcement, and classifier system bidding. Mach. Learn. 5(4), 407–425 (1990)Google Scholar
  23. Hamadi, Y., Monfroy, E., Saubion, F.: Autonomous Search. Springer, Berlin (2012)CrossRefGoogle Scholar
  24. Jorge, J.: Nouvelles propositions pour la résolution exacte du sac à dos multi-objectif unidimensionnel en variables binaires. Ph.D. thesis, Université de Nantes (2010)Google Scholar
  25. Kellerer, H., Pferschy, U., Pisinger, D.: Knapsack Problems. Springer, Berlin (2004)CrossRefzbMATHGoogle Scholar
  26. Klamroth, K., Wiecek, M. M.: Dynamic programming approaches to the multiple criteria knapsack problem. Naval Res. Logistics, pp. 57–76 (2000)Google Scholar
  27. Kolesar, P.J.: A branch and bound algorithm for the knapsack problem. Manag. Sci. 13(9), 723–735 (1967)CrossRefGoogle Scholar
  28. Loth, M., Sebag, M., Hamadi, Y., Schoenauer, M.: Bandit-based search for constraint programming. In: Principles and Practice of Constraint Programming—19th International Conference, CP 2013, Uppsala, Sweden, September 16–20, 2013. Proceedings, volume 8124 of Lecture Notes in Computer Science, pp. 464–480. Springer (2013)Google Scholar
  29. Martello, S., Pisinger, D., Toth, P.: Dynamic programming and strong bounds for the 0–1 knapsack problem. Manag. Sci. 45(3), 414–424 (1999)CrossRefzbMATHGoogle Scholar
  30. Martello, S., Toth, P.: Knapsack Problems : Algorithms and Computer Implementations. Wiley, New York (1990)zbMATHGoogle Scholar
  31. Maturana, J., Fialho, A., Saubion, F., Schoenauer, M., Lardeux, F., Sebag, M.: Adaptive operator selection and management in evolutionary algorithms. In: Autonomous Search, pp. 161–189. Springer (2012)Google Scholar
  32. Mavrotas, G., Florios, K.: An improved version of the augmented \(\varepsilon \)-constraint method (augmecon2) for finding the exact pareto set in multi-objective integer programming problems. Appl. Math. Comput. 219(18), 9652–9669 (2013)MathSciNetzbMATHGoogle Scholar
  33. Özpeynirci, Ö., Köksalan, M.: An exact algorithm for finding extreme supported nondominated points of multiobjective mixed integer programs. Manag. Sci. 56(12), 2302–2315 (2010)CrossRefzbMATHGoogle Scholar
  34. Page, E.: Continuous inspection schemes. Biometrika 41, 100–115 (1954)MathSciNetCrossRefzbMATHGoogle Scholar
  35. Pisinger, D.: Implementation of Combo. (2002)
  36. Przybylski, A., Gandibleux, X.: Multi-objective branch and bound. Eur. J. Oper. Res. 260(3), 856–872 (2017)MathSciNetCrossRefGoogle Scholar
  37. Przybylski, A., Gandibleux, X., Ehrgott, M.: A two phase method for multi-objective integer programming and its application to the assignment problem with three objectives. Discrete Optim. 7(3), 149–165 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  38. Shih, W.: A branch and bound method for the multiconstraint zero-one knapsack problem. J. Oper. Res. Soc. 30(4), 369–378 (1979)CrossRefzbMATHGoogle Scholar
  39. Sourd, F., Spanjaard, O.: A multiobjective branch-and-bound framework: application to the biobjective spanning tree problem. INFORMS J. Comput. 20, 472–484 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  40. Thesen, A.: A recursive branch and bound algorithm for the multidimensional knapsack problem. Naval Res. Logistics Quart. 22(2), 341–353 (1975)MathSciNetCrossRefzbMATHGoogle Scholar
  41. Ulungu, E.L., Teghem, J.: The two phases method: an efficient procedure to solve bi-objective combinatorial optimization problems. Found. Comput. Decis. Sci. 20(2), 149–165 (1995)MathSciNetzbMATHGoogle Scholar
  42. Ulungu, E. L., Teghem, J.: Solving multi-objective knapsack problem by a branch-and-bound procedure. In: Multicriteria Analysis: Proceedings of the XIth International Conference on MCDM, 1–6 August 1994, Coimbra, Portugal, pp. 269–278 (1997)Google Scholar
  43. Visée, M., Teghem, J., Pirlot, M., Ulungu, E.L.: Two-phases method and branch and bound procedures to solve the bi-objective knapsack problem. J. Global Optim. 12, 139–155 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  44. Zhang, W., Reimann, M.: A simple augmented \(\epsilon \)-constraint method for multi-objective mathematical integer programming problems. Eur. J. Oper. Res. 234(1), 15–24 (2014)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • Audrey Cerqueus
    • 1
    Email author
  • Xavier Gandibleux
    • 2
  • Anthony Przybylski
    • 2
  • Frédéric Saubion
    • 3
  1. 1.LIMOS UMR 6158Mines Saint-ÉtienneSaint-Étienne Cedex 2France
  2. 2.IRCCyN UMR CNRS 6597Université de NantesNantes Cedex 03France
  3. 3.LERIAUniversité d’AngersAngers Cedex 01France

Personalised recommendations