Journal of Heuristics

, Volume 23, Issue 4, pp 207–229 | Cite as

Finding near-optimal independent sets at scale

  • Sebastian Lamm
  • Peter Sanders
  • Christian SchulzEmail author
  • Darren StrashEmail author
  • Renato F. Werneck


The maximum independent set problem is NP-hard and particularly difficult to solve in sparse graphs, which typically take exponential time to solve exactly using the best-known exact algorithms. In this paper, we present two new novel heuristic algorithms for computing large independent sets on huge sparse graphs, which are intractable in practice. First, we develop an advanced evolutionary algorithm that uses fast graph partitioning with local search algorithms to implement efficient combine operations that exchange whole blocks of given independent sets. Though the evolutionary algorithm itself is highly competitive with existing heuristic algorithms on large social networks, we further show that it can be effectively used as an oracle to guess vertices that are likely to be in large independent sets. We then show how to combine these guesses with kernelization techniques in a branch-and-reduce-like algorithm to compute high-quality independent sets quickly in huge complex networks. Our experiments against a recent (and fast) exact algorithm for large sparse graphs show that our technique always computes an optimal solution when the exact solution is known, and it further computes consistent results on even larger instances where the solution is unknown. Ultimately, we show that identifying and removing vertices likely to be in large independent sets opens up the reduction space—which not only speeds up the computation of large independent sets drastically, but also enables us to compute high-quality independent sets on much larger instances than previously reported in the literature.


Maximum independent set problem Minimum vertex cover problem Evolutionary/genetic algorithms Heuristic algorithms Local search Kernelization 


  1. Akiba, T., Iwata, Y.: Branch-and-reduce exponential/FPT algorithms in practice: a case study of vertex cover. Theor. Comput. Sci. 609(Part 1), 211–225 (2016). doi: 10.1016/j.tcs.2015.09.023
  2. Andrade, D.V., Resende, M.G.C., Werneck, R.F.: Fast local search for the maximum independent set problem. J. Heuristics 18(4), 525–547 (2012). doi: 10.1007/s10732-012-9196-4 CrossRefzbMATHGoogle Scholar
  3. Bäck, T., Khuri, S.: An evolutionary heuristic for the maximum independent set problem. In: Proceedings of the 1st IEEE Conference on Evolutionary Computation, pp. 531–535. IEEE (1994)Google Scholar
  4. Bäck, T.: Evolutionary algorithms in theory and practice: evolution strategies, evolutionary programming, genetic algorithms. Ph.D. thesis (1996)Google Scholar
  5. Bader, D.A., Meyerhenke, H., Sanders, P., Schulz, C., Kappes, A., Wagner, D.: Benchmarking for graph clustering and partitioning. In: Alhajj, R., Rokne, J. (eds.) Encyclopedia of Social Network Analysis and Mining, pp. 73–82. Springer, New York (2014). doi: 10.1007/978-1-4614-6170-8_23
  6. Batsyn, M., Goldengorin, B., Maslov, E., Pardalos, P.: Improvements to mcs algorithm for the maximum clique problem. J. Comb. Optim. 27(2), 397–416 (2014). doi: 10.1007/s10878-012-9592-6 MathSciNetCrossRefzbMATHGoogle Scholar
  7. Battiti, R., Protasi, M.: Reactive local search for the maximum clique problem. Algorithmica 29(4), 610–637 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  8. Boldi, P., Vigna, S.: The WebGraph framework I: compression techniques. In: Proceedings of the 13th International World Wide Web Conference (WWW 2004), Manhattan, USA, pp. 595–601. ACM Press (2004)Google Scholar
  9. Boldi, P., Rosa, M., Santini, M., Vigna, S.: Layered label propagation: a multiresolution coordinate-free ordering for compressing social networks. In: Srinivasan, S., Ramamritham, K., Kumar, A., Ravindra, M.P., Bertino, E., Kumar, R. (eds.) Proceedings of the 20th International Conference on World Wide Web, pp. 587–596. ACM Press, New York (2011)Google Scholar
  10. Borisovsky, P.A., Zavolovskaya, M.S.: Experimental comparison of two evolutionary algorithms for the independent set problem. In: Cagnoni, S., Johnson C.G., Cardalda, J.J.R., Marchiori, E., Corne, D.W., Meyer, J-A., Gottlieb, J., Middendorf, M., Guillot, A., Raidl, G.R., Hart, E., (eds.) Applications of Evolutionary Computing: EvoWorkshops 2003: EvoBIO, EvoCOP, EvoIASP, EvoMUSART, EvoROB, and EvoSTIM, Essex, UK, April 14–16, 2003, pp. 154–164. Springer, Berlin, Heidelberg (2003). doi: 10.1007/3-540-36605-9_15
  11. Bourgeois, N., Escoffier, B., Paschos, V., van Rooij, J.M.: Fast algorithms for max independent set. Algorithmica 62(1–2), 382–415 (2012). doi: 10.1007/s00453-010-9460-7 MathSciNetCrossRefzbMATHGoogle Scholar
  12. Butenko, S., Pardalos, P., Sergienko, I., Shylo, V., Stetsyuk, P.: Finding maximum independent sets in graphs arising from coding theory. In: Proceedings of the 2002 ACM Symposium on Applied Computing, SAC ’02, pp. 542–546. ACM, New York, NY, USA. doi: 10.1145/508791.508897 (2002)
  13. Butenko, S., Trukhanov, S.: Using critical sets to solve the maximum independent set problem. Oper. Res. Lett. 35(4), 519524 (2007). doi: 10.1016/j.orl.2006.07.004 MathSciNetCrossRefzbMATHGoogle Scholar
  14. Davis, T.A., Hu, Y.: The university of Florida sparse matrix collection. ACM Trans. Math. Softw. 38(1), 1:1–1:25 (2011). ISSN 0098-3500.
  15. De Jong, K.A.: Evolutionary Computation: A Unified Approach. MIT Press, Cambridge (2006). ISBN 0-262-04194-4zbMATHGoogle Scholar
  16. Delling, D., Sanders, P., Schultes, D., Wagner, D.: Engineering route planning algorithms. In: Lerner, J., Wagner, D., Zweig, K.A. (eds.) Algorithmics of Large and Complex Networks: Design, Analysis, and Simulation, Vol 5515 of LNCS State-of-the-Art Survey, pp. 117–139. Springer, Berlin, Heidelberg (2009). doi: 10.1007/978-3-642-02094-0_7
  17. Demetrescu, C., Goldberg, A.V., Johnson, D.S.: The Shortest Path Problem: 9th DIMACS Implementation Challenge, vol. 74. AMS, Providence (2009)CrossRefzbMATHGoogle Scholar
  18. Feo, T.A., Resende, M.G.C., Smith, S.H.: A greedy randomized adaptive search procedure for maximum independent set. Oper. Res. 42(5), 860–878 (1994)CrossRefzbMATHGoogle Scholar
  19. Fomin, F.V., Kratsch, D.: Exact Exponential Algorithms. Springer, New York (2010)CrossRefzbMATHGoogle Scholar
  20. Gardiner, E.J., Willett, P., Artymiuk, P.J.: Graph-theoretic techniques for macromolecular docking. J. Chem. Inf. Comput. Sci. 40(2), 273–279 (2000). doi: 10.1021/ci990262o CrossRefGoogle Scholar
  21. Garey, M.R.: Johnson, David S: Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman & Co., New York (1979)Google Scholar
  22. Gemsa, A., Nöllenburg, M., Rutter, I.: Evaluation of labeling strategies for rotating maps. In: Experimental Algorithms, vol. 8504 of LNCS, pp. 235–246. Springer (2014). doi: 10.1007/978-3-319-07959-2_20
  23. Goldberg, D.E.: Genetic Algorithms in Search, Optimization, and Machine Learning, 1st edn. Addison-Wesley Longman Publishing Co., Inc, Boston (1989)Google Scholar
  24. Grosso, A., Locatelli, M., Della, F., Combining, C.: Swaps and node weights in an adaptive greedy approach for the maximum clique problem. J. Heuristics 10(2), 135–152 (2004)CrossRefGoogle Scholar
  25. Grosso, A., Locatelli, M., Pullan, W.: Simple ingredients leading to very efficient heuristics for the maximum clique problem. J. Heuristics 14(6), 587–612 (2008)CrossRefzbMATHGoogle Scholar
  26. Hansen, P., Mladenović, N., Urošević, D.: Variable neighborhood search for the maximum clique. Discrete Appl. Math. 145(1), 117–125 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  27. Harary, F., Ross, I.C.: A procedure for clique detection using the group matrix. Sociometry 20(3), 205–215 (1957).
  28. Iwata, Y., Oka, K., Yoshida, Y.: Linear-time FPT algorithms via network flow. In: Proceedings of 25th ACM-SIAM Symposium on Discrete Algorithms, SODA ’14, pp. 1749–1761. SIAM (2014). ISBN 978-1-611973-38-9.
  29. Katayama, K., Hamamoto, A., Narihisa, H.: An effective local search for the maximum clique problem. Inf. Process. Lett. 95(5), 503–511 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  30. Kieritz, T., Luxen, D., Sanders, P., Vetter, C.: Distributed time-dependent contraction hierarchies. In: Festa, P. (ed.) Experimental Algorithms, of LNCS, vol. 6049, pp. 83–93. Springer, Berlin (2010). doi: 10.1007/978-3-642-13193-6_8
  31. Lamm, S., Sanders, P., Schulz, C.: Graph partitioning for independent sets. In: Proceedings of the 14th International Symposium on Experimental Algorithms (SEA’15), vol. 8504, pp. 68–81. Springer (2015). ISBN 978-3-642-30849-9Google Scholar
  32. Lamm, S., Sanders, P., Schulz, C., Strash, D., Werneck, R.F.: Finding near-optimal independent sets at scale. In: Proceedings of the 18th Workshop on Algorithm Engineering and Expermiments, ALENEX’16 (2016)Google Scholar
  33. Li, C., Fang, Z., Xu, K.: Combining maxsat reasoning and incremental upper bound for the maximum clique problem. In: Proceedings of 25th International Conference on Tools with Artificial Intelligence (ICTAI), pp. 939–946 (2013). doi: 10.1109/ICTAI.2013.143
  34. Liu, Y., Lu, J., Yang, H., Xiao, X., Wei, Z.: Towards maximum independent sets on massive graphs. Proc. VLDB Endow. 8(13), 2122–2133 (2015). doi: 10.14778/2831360.2831366 CrossRefGoogle Scholar
  35. Miller, B.L., Goldberg, D.E.: Genetic algorithms, tournament selection, and the effects of noise. Evolut. Comput. 4(2), 113–131 (1996)CrossRefGoogle Scholar
  36. Nemhauser, G.L., Trotter Jr., L.E.: Vertex packings: structural properties and algorithms. Math. Program. 8(1), 232–248 (1975). doi: 10.1007/BF01580444 MathSciNetCrossRefzbMATHGoogle Scholar
  37. Pullan, W.J., Hoos, H.H.: Dynamic local search for the maximum clique problem. J. Artif. Intell. Res. (JAIR) 25, 159–185 (2006)zbMATHGoogle Scholar
  38. San Segundo, P., Rodríguez-Losada, D., Agustín, J.: An exact bit-parallel algorithm for the maximum clique problem. Comput. Oper. Res. 38(2), 571–581 (2011). doi: 10.1016/j.cor.2010.07.019 MathSciNetCrossRefzbMATHGoogle Scholar
  39. San Segundo, P., Matia, F., Rodriguez-Losada, D., Hernando, M.: An improved bit parallel exact maximum clique algorithm. Optim. Lett. 7(3), 467–479 (2013). doi: 10.1007/s11590-011-0431-y MathSciNetCrossRefzbMATHGoogle Scholar
  40. Sander, P.V., Nehab, D., Chlamtac, E., Hoppe, H.: Efficient traversal of mesh edges using adjacency primitives. ACM Trans. Graph. 27(5), 144:1–144:9 (2008). doi: 10.1145/1409060.1409097
  41. Sanders, P., Schulz, C.: KaHIP: Karlsruhe high qualtity partitioning homepage.
  42. Soper, A.J., Walshaw, C., Cross, M.: A combined evolutionary search and multilevel optimisation approach to graph-partitioning. J. Glob. Optim. 29(2), 225–241 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  43. Tarjan, R.E., Trojanowski, A.E.: Finding a maximum independent set. SIAM J. Comput. 6(3), 537–546 (1977). doi: 10.1137/0206038 MathSciNetCrossRefzbMATHGoogle Scholar
  44. Tomita, E., Sutani, Y., Higashi, T., Takahashi, S., Wakatsuki, M.: A simple and faster branch-and-bound algorithm for finding a maximum clique. In: Saidur Rahman, M.D., Fujita, S. (eds.) WALCOM: Algorithms and Computation of LNCS, vol. 5942, pp. 191–203. Springer, Berlin (2010). doi: 10.1007/978-3-642-11440-3_18
  45. Wu, Q., Hao, J.: A review on algorithms for maximum clique problems. Eur. J. Oper. Res. 242(3), 693–709 (2015). doi: 10.1016/j.ejor.2014.09.064 MathSciNetCrossRefzbMATHGoogle Scholar
  46. Xiang, J., Guo, C., Aboulnaga, A.: Scalable maximum clique computation using mapreduce. In: Proceedings of the 2013 IEEE 29th International Conference on Data Engineering (ICDE), pp. 74–85 (2013). doi: 10.1109/ICDE.2013.6544815
  47. Xiao, M., Nagamochi, H.: Confining sets and avoiding bottleneck cases: a simple maximum independent set algorithm in degree-3 graphs. Theor. Comput. Sci. 469, 92–104 (2013a). doi: 10.1016/j.tcs.2012.09.022 MathSciNetCrossRefzbMATHGoogle Scholar
  48. Xiao, M., Nagamochi, H.: Exact Algorithms for Maximum Independent Set. arXiv:1312.6260 (2013b)
  49. Zaki, M.J., Parthasarathy, S., Ogihara, M., Li, W.: New algorithms for fast discovery of association rules. In: Proceedings of the 3rd International Conference on Knowledge Discovery and Data Mining, pp. 283–286. AAAI Press (1997)Google Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Institute of Theoretical InformaticsKarlsruhe Institute of Technology (KIT)KarlsruheGermany
  2. 2.University of ViennaViennaAustria
  3. 3.Department of Computer ScienceColgate UniversityHamiltonUSA
  4. 4.San FranciscoUSA

Personalised recommendations