PageRank centrality for performance prediction: the impact of the local optima network model

  • Sebastian Herrmann
  • Gabriela Ochoa
  • Franz Rothlauf
Article
  • 55 Downloads

Abstract

A local optima network (LON) compresses relevant features of fitness landscapes in a complex network, where nodes are local optima and edges represent transition probabilities between different basins of attraction. Previous work has found that the PageRank centrality of local optima can be used to predict the success rate and average fitness achieved by local search based metaheuristics. Results are available for LONs where edges describe either basin transition probabilities or escape edges. This paper studies the interplay between the type of LON edges and the ability of the PageRank centrality for the resulting LON to predict the performance of local search based metaheuristics. It finds that LONs are stochastic models of the search heuristic. Thus, to achieve an accurate prediction, the definition of the LON edges must properly reflect the type of diversification steps used in the metaheuristic. LONs with edges representing basin transition probabilities capture well the diversification mechanism of simulated annealing which sometimes also accepts worse solutions that allow the search process to pass between basins. In contrast, LONs with escape edges capture well the diversification step of iterated local search, which escapes from local optima by applying a larger perturbation step.

Keywords

Fitness landscape analysis Search difficulty PageRank centrality Local optima networks NK landscapes 

References

  1. Applegate, D., Cook, W., Rohe, A.: Chained Lin–Kernighan for large traveling salesman problems. INFORMS J. Comput. 15(1), 82–92 (2003). doi:10.1287/ijoc.15.1.82.15157 MathSciNetCrossRefMATHGoogle Scholar
  2. Borgatti, S.P.: Centrality and network flow. Soc. Netw. 27(1), 55–71 (2005). doi:10.1016/j.socnet.2004.11.008 MathSciNetCrossRefGoogle Scholar
  3. Brin, S., Page, L.: The anatomy of a large-scale hypertextual web search engine. Comput. Netw. ISDN Syst. 30(1–7), 107–117 (1998). doi:10.1016/S0169-7552(98)00110-X CrossRefGoogle Scholar
  4. Chicano, F., Daolio, F., Ochoa, G., Vérel, S., Tomassini, M., Alba, E.: Local optima networks, landscape autocorrelation and heuristic search performance. In: Coello, C.A.C., Cutello, V., Deb, K., Forrest, S., Nicosia, G., Pavone, M. (eds.) Parallel Problem Solving from Nature—PPSN XII: 12th International Conference, vol. 7492 LNCS, pp. 337–347. Springer, Berlin (2012). doi:10.1007/978-3-642-32964-7_34
  5. Daolio, F., Verel, S., Ochoa, G., Tomassini, M.: Local optima networks and the performance of iterated local search. In: Soule, T. (ed.) Proceedings of the Fourteenth International Conference on Genetic and Evolutionary Computation Conference—GECCO ’12, p. 369. ACM Press, Philadelphia (2012). doi:10.1145/2330163.2330217
  6. Franceschet, M.: PageRank: standing on the shoulders of giants. Commun. ACM 54(6), 92–101 (2011). doi:10.1145/1953122.1953146 CrossRefGoogle Scholar
  7. Frobenius, F.G.: Ueber Matrizen aus nicht negativen Elementen, pp. 456–477. Sitzungsberichte Preussische Akademie der Wissenschaft, Berlin (1912)Google Scholar
  8. Hagberg, A.A., Schult, D.A., Swart, P.J.: Exploring network structure, dynamics, and function using NetworkX. In: Proceedings of the 7th Python in Science Conference (SciPy 2008), pp. 11–15 (2008)Google Scholar
  9. Herrmann, S.: Determining the difficulty of landscapes by PageRank centrality in local optima networks. In: Chicano, F., Hu, B., García-Sánchez, P. (eds.) Evolutionary Computation in Combinatorial Optimization: 16th European Conference, EvoCOP 2016, Porto, Portugal, March 30–April 1, 2016, Proceedings, pp. 74–87. Springer International Publishing, Cham (2016). doi:10.1007/978-3-319-30698-8_6
  10. Herrmann, S., Rothlauf, F.: Predicting heuristic search performance with PageRank centrality in local optima networks. In: Silva, S. (ed.) Proceedings of the 2015 Genetic and Evolutionary Computation Conference—GECCO ’15, pp. 401–408. ACM Press, Madrid (2015). doi:10.1145/2739480.2754691
  11. Jones, T., Forrest, S.: Fitness distance correlation as a measure of problem difficulty for genetic algorithms. In: Proceedings of the Sixth International Conference on Genetic Algorithms, pp. 184–192. Morgan Kaufmann Publishers Inc., San Francisco, CA (1995)Google Scholar
  12. Kallel, L., Naudts, B., Reeves, C.R.: Properties of fitness functions and search landscapes. In: Kallel, L., Naudts, B., Rogers, A. (eds.) Theoretical Aspects of Evolutionary Computing, Natural Computing Series, pp. 175–206. Springer, Berlin (2001). doi:10.1007/978-3-662-04448-3_8 CrossRefGoogle Scholar
  13. Kauffman, S.A., Weinberger, E.D.: The NK model of rugged fitness landscapes and its application to maturation of the immune response. J. Theor. Biol. 141(2), 211–245 (1989). doi:10.1016/S0022-5193(89)80019-0 CrossRefGoogle Scholar
  14. Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Optimization by simulated annealing. Science 220(4598), 671–80 (1983). doi:10.1126/science.220.4598.671 MathSciNetCrossRefMATHGoogle Scholar
  15. Laarhoven, P.J.M., Aarts, E.H.L.: Simulated Annealing: Theory and Applications. Kluwer Academic Publishers, Norwell, MA (1988)MATHGoogle Scholar
  16. Lin, S., Kernighan, B.W.: An effective heuristic algorithm for the traveling-salesman problem. Oper. Res. 21(2), 498–516 (1973). doi:10.1287/opre.21.2.498 MathSciNetCrossRefMATHGoogle Scholar
  17. Lourenço, H.R., Martin, O.C., Stützle, T.: Iterated local search. In: Glover, F., Kochenberger, G.A. (eds.) Handbook of Metaheuristics, pp. 320–353. Kluwer Academic Publishers, Boston (2003). doi:10.1007/0-306-48056-5_11.
  18. Lu, G., Li, J., Yao, X.: Fitness landscapes and problem difficulty in evolutionary algorithms: from theory to applications. In: Richter, H., Engelbrecht, A. (eds.) Recent Advances in the Theory and Application of Fitness Landscapes, Emergence, Complexity and Computation, pp. 133–152. Springer, Berlin (2014). doi:10.1007/978-3-642-41888-4 CrossRefGoogle Scholar
  19. Malan, K.M., Engelbrecht, A.P.: Fitness landscape analysis for metaheuristic performance prediction. In: Richter, H., Engelbrecht, A. (eds.) Recent Advances in the Theory and Application of Fitness Landscapes, pp. 103–129. Springer, Berlin (2014). doi:10.1007/978-3-642-41888-4_9 CrossRefGoogle Scholar
  20. Ochoa, G., Tomassini, M., Vérel, S., Darabos, C.: A study of NK landscapes’ basins and local optima networks. In: Keijzer, M. (ed) Proceedings of the 10th Annual Conference on Genetic and Evolutionary Computation—GECCO ’08, pp. 555–562. ACM Press, Atlanta, GA (2008). doi:10.1145/1389095.1389204
  21. Ochoa, G., Verel, S., Tomassini, M.: First-improvement vs. best-improvement local optima networks of NK landscapes. In: Schaefer, R., Cotta, C., Kolodziej, J., Rudolph, G. (eds.) PPSN’10: Proceedings of the 11th International Conference on Parallel Problem Solving from Nature, vol. I, pp. 104–113. Springer, Kraków (2010)Google Scholar
  22. Ochoa, G., Verel, S., Daolio, F., Tomassini, M.: Local optima networks: a new model of combinatorial fitness landscapes. In: Richter, H., Engelbrecht, A. (eds.) Recent Advances in the Theory and Application of Fitness Landscapes, Emergence, Complexity and Computation, vol. 6, pp. 233–262. Springer, Berlin. (2014). doi:10.1007/978-3-642-41888-4_9 CrossRefGoogle Scholar
  23. Ochoa, G., Chicano, F., Tinós, R., Whitley, D.: Tunnelling crossover networks. In: Silva, S. (ed) Proceedings of the 2015 Genetic and Evolutionary Computation Conference—GECCO ’15, pp. 449–456. ACM Press, Madrid (2015). doi:10.1145/2739480.2754657
  24. Ochoa, G., Veerapen, N., Whitley, D., Burke, E.K.: The multi-funnel structure of TSP fitness landscapes: a visual exploration. In: Artificial Evolution: 12th International Conference, Evolution Artificielle, EA 2015, pp. 1–13. Springer International Publishing, Lyon (2016). doi:10.1007/978-3-319-31471-6_1
  25. Perron, O.: Zur Theorie der Matrices. Mathematische Annalen 1 64(1), 248–263 (1907)MathSciNetCrossRefMATHGoogle Scholar
  26. Pitzer, E., Affenzeller, M.: A Comprehensive survey on fitness landscape analysis. In: Fodor, J., Klempous, R., Suárez Araujo, C.P. (eds.) Recent Advances in Intelligent Engineering Systems, Studies in Computational Intelligence, vol. 378, pp. 161–191 (2012). Springer, Berlin. doi:10.1007/978-3-642-23229-9
  27. R Core Team: R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. http://www.R-project.org/ (2014)
  28. Reidys, C.M., Stadler, P.F.: Combinatorial landscapes. SIAM Rev. 44(1), 3–54 (2002). doi:10.1137/S0036144501395952 MathSciNetCrossRefMATHGoogle Scholar
  29. Rothlauf, F.: Design of Modern Heuristics: Principles and Application. Springer, Berlin (2011)CrossRefMATHGoogle Scholar
  30. Stadler, P.F.: Fitness landscapes. Appl. Math. Comput. 117, 187–207 (2002)MathSciNetGoogle Scholar
  31. Stillinger, F.H.: A topographic view of supercooled liquids and glass formation. Science 267(5206), 1935–1939 (1995). doi:10.1126/science.267.5206.1935 CrossRefGoogle Scholar
  32. Vérel, S., Daolio, F., Ochoa, G., Tomassini, M.: Local optima networks with escape edges. In: Hao, J.K., Legrand, P., Collet, P., Monmarché, N., Lutton, E., Schoenauer, M. (eds.) Artificial Evolution, EA 2011. Lecture Notes in Computer Science, vol. 7401, pp. 49–60. Springer, Berlin, Heidelberg (2012)Google Scholar
  33. Weinberger, E.D.: Correlated and uncorrelated fitness landscapes and how to tell the difference. Biol. Cybern. 336, 325–336 (1990)CrossRefMATHGoogle Scholar
  34. Wright, S.: The roles of mutation, inbreeding, crossbreeding, and selection in evolution. In: Jones, D.F. (ed.) Proceedings of the 6th International Congress of Genetics, Morgan Kaufmann Publishers Inc, pp. 356–366. Ithaca, New York (1932)Google Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Johannes Gutenberg-UniversitätMainzGermany
  2. 2.University of StirlingStirlingScotland, UK

Personalised recommendations