Journal of Heuristics

, Volume 22, Issue 3, pp 245–271 | Cite as

Extending quick hypervolume

Article

Abstract

We extend the functionality of the quick hypervolume (QHV) algorithm. Given a set of d-dimensional points this algorithm determines the hypervolume of the dominated space, a useful measure for multiobjective evolutionary algorithms (MOEAs). We extend QHV in two ways: adapt it to compute the exclusive hypervolume of each point, and speed it up with parallel computation, that adjusts nicely to the divide and conquer methodology of QHV. The resulting algorithms are faster and more informative sub-routines, which can be used for MOEAs with a large number of objectives.

Keywords

Diversity methods Hypervolume Multiobjective optimization Performance metrics 

References

  1. Aho, A., Hopcroft, J.: Design & Analysis of Computer Algorithms. Pearson Education India, Gurgaon (1974)MATHGoogle Scholar
  2. Amdahl, G.M.: Validity of the single processor approach to achieving large scale computing capabilities. In: Proceedings of the April 18–20, 1967, Spring Joint Computer Conference, AFIPS ’67 (Spring), pp. 483–485. ACM, New York, NY, USA (1967)Google Scholar
  3. Bentley, J.: Programming Pearls. Addison-Wesley Professional, Reading (2000)MATHGoogle Scholar
  4. Bradstreet, L., While, L., Barone, L.: A fast incremental hypervolume algorithm. IEEE Trans. Evol. Comput. 12(6), 714–723 (2008)CrossRefGoogle Scholar
  5. Briggs, P., Torczon, L.: An efficient representation for sparse sets. ACM Lett. Progr. Lang. Syst. 2, 59–69 (1993)CrossRefGoogle Scholar
  6. Bringmann, K., Friedrich, T.: Approximating the least hypervolume contributor: Np-hard in general, but fast in practice. In: EMO, pp. 6–20 (2009)Google Scholar
  7. Bringmann, K., Friedrich, T.: An efficient algorithm for computing hypervolume contributions. Evol. Comput. 18(3), 383–402 (2010)CrossRefGoogle Scholar
  8. Butenhof, D.: Programming with POSIX Threads. Addison-Wesley Professional, Reading (1997)Google Scholar
  9. Deb, K.: Multi-objective Optimization Using Evolutionary Algorithms. Wiley-Interscience series in systems and optimization. Wiley, Chichester (2009)MATHGoogle Scholar
  10. Emmerich, M., Beume, N., Naujoks, B.: An EMO algorithm using the hypervolume measure as selection criterion. In: Evolutionary Multi-criterion Optimization, LNCS, vol. 3410, pp. 62–76. Springer (2005)Google Scholar
  11. Floyd, R.W., Rivest, R.L.: Algorithm 489: The algorithm SELECT for finding the ith smallest of n elements [m1]. Commun. ACM 18(3), 173 (1975)CrossRefGoogle Scholar
  12. Fonseca, C.M., Guerreiro, A.P., López-Ibáñez, M., Paquete, L.: On the computation of the empirical attainment function. In: EMO, pp. 106–120 (2011)Google Scholar
  13. Goh, C., Ong, Y., Tan, K.: Multi-objective Memetic Algorithms, vol. 171. Springer, Berlin (2009)CrossRefMATHGoogle Scholar
  14. Gustafson, J.L.: Reevaluating Amdahl’s law. Commun. ACM 31, 532–533 (1988)CrossRefGoogle Scholar
  15. Hoare, C.A.R.: Algorithm 64: Quicksort. Commun. ACM 4, 321 (1961)CrossRefGoogle Scholar
  16. Hoare, C.A.R.: Algorithm 65: Find. Commun. ACM 4(7), 321–322 (1961)CrossRefGoogle Scholar
  17. Huband, S., Hingston, P., While, L., Barone, L.: An evolution strategy with probabilistic mutation for multi-objective optimization. In: IEEE Congress on Evolutionary Computation, pp. 2284–2291 (2003)Google Scholar
  18. Irwin, J.O.: On the frequency distribution of the means of samples from a population having any law of frequency with finite moments, with special reference to pearson’s type ii. Biometrika 19(3–4), 225–239 (1927)CrossRefMATHGoogle Scholar
  19. Knowles, J.D., Corne, D.W., Fleischer, M.: Bounded archiving using the lebesgue measure. In: IEEE Congress on Evolutionary Computation, pp. 2490–2497 (2003)Google Scholar
  20. Karp, A.H., Flatt, H.P.: Measuring parallel processor performance. Commun. ACM 33(5), 539–543 (1990)CrossRefGoogle Scholar
  21. Kiwiel, K.C.: On Floyd and Rivest’s SELECT algorithm. Theor. Comput. Sci. 347(1–2), 214–238 (2005)CrossRefMATHMathSciNetGoogle Scholar
  22. Overmars, M., Yap, C.K.: New upper bounds in klee’s measure problem. In: 1988 29th Annual Symposium on Foundations of Computer Science, pp. 550–556 (1988)Google Scholar
  23. Philip, H.: The distribution of means for samples of size n drawn from a population in which the variate takes values between 0 and 1, all such values being equally probable. Biometrika 19(3–4), 240–244 (1927)CrossRefMATHGoogle Scholar
  24. Russo, L.M.S., Francisco, A.P.: Quick hypervolume. IEEE Trans Evol. Comput. 18(4), 481–502 (2014)CrossRefGoogle Scholar
  25. Schwartz, B.: The Paradox of Choice: Why More is Less. P. S. Series. HarperCollins, New York (2005)Google Scholar
  26. Watanabe, T., Tatsukawa, T., Oyama, A.: On the fast hypervolume calculation method. In: 2015 IEEE Congress on Evolutionary Computation (CEC), pp. 965–969 (2015). doi:10.1109/CEC.2015.7256994
  27. While, L., Bradstreet, L.: Applying the WFG algorithm to calculate incremental hypervolumes. In: 2012 IEEE Congress on Evolutionary Computation (CEC), pp. 1–8. IEEE (2012)Google Scholar
  28. While, L., Bradstreet, L., Barone, L.: A fast way of calculating exact hypervolumes. IEEE Trans. Evol. Comput. 16(1), 86–95 (2011)Google Scholar
  29. Zhou, A., Qu, B., Li, H., Zhao, S., Suganthan, P., Zhang, Q.: Multiobjective evolutionary algorithms: A survey of the state-of-the-art. Swarm Evol. Comput. 1(1), 32–49 (2011)CrossRefGoogle Scholar
  30. Zitzler, E., Künzli, S.: Indicator-based selection in multiobjective search. In: Parallel Problem Solving from Nature VIII, vol. 3242, pp. 832–842 (2004)Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.INESC-IDLisbonPortugal
  2. 2.Department of Computer Science and Engineering, Instituto Superior TécnicoUniversidade de LisboaLisbonPortugal

Personalised recommendations