Journal of Heuristics

, Volume 21, Issue 6, pp 789–817 | Cite as

Interactive planning system for forest road location

  • David Meignan
  • Jean-Marc Frayret
  • Gilles Pesant


This paper presents an interactive planning system for forest road location. This decision support system is based on an interactive heuristic approach referred to as interactive large neighborhood search, within which the user contributes in a cooperative manner to the optimization process. The objective of this cooperative optimization process is to exploit the problem-domain expertise of the user in order to, on the one hand, guide the search for a solution towards intuitively interesting parts of the solution space, and, on the other hand, generate more practical solutions that integrate aspects of the decision problem that are not captured by the heuristic objective function. This paper more specifically presents the user interface, the interaction mechanisms and the heuristic developed to support the cooperation between the computer and the user. We also present experimental results based on real problem instances, with an expert user. A comparison shows advantages for using the proposed interactive approach over a pure manual or pure automated approach.


Interactive optimization Heuristics Forest road location Decision support Interactive large neighborhood search 



The authors would like to thank Mathieu Blouin and Jean Favreau as well as the contribution of FQRNT (Fonds Québécois de la Recherche sur la Nature et les Technologies), Mitacs, and NSERC (Natural Sciences and Engineering Research Council of Canada) for having supported the project under the discovery grant program.


  1. Anderson, A.E., Nelson, J.: Projecting vector-based road networks with a shortest path algorithm. Can. J. For. Res. 34(7), 1444–1457 (2004)CrossRefGoogle Scholar
  2. Babbar-Sebens, M., Minsker, B.: A case-based micro interactive genetic algorithm (CBMIGA) for interactive learning and search: methodology and application to groundwater monitoring design. Environ. Model. Softw. 25, 1176–1187 (2010)CrossRefGoogle Scholar
  3. Banzhaf, W.: Interactive evolution. In: Handbook of Evolutionary Computation, pp. 1–6. Oxford University Press, Oxford (1997)Google Scholar
  4. Biles, J., Anderson, P., Loggi, L.: Neural network fitness functions for a musical IGA. In: Proceedings of the International ICSC Symposium on Intelligent Industrial Automation (1996)Google Scholar
  5. Branke, J., Deb, K., Miettinen, K., Slowinski, R.: Multiobjective Optimization, Interactive and Evolutionary Approaches, Lecture Notes in Computer Science, vol. 5252. Springer, Berlin (2008)Google Scholar
  6. Branke, J., Kaußler, T., Schmeck, H.: Guidance in evolutionary multi-objective optimization. Adv. Eng. Softw. 32, 499–507 (2001)zbMATHCrossRefGoogle Scholar
  7. Chung, W., Stückelberger, J., Aruga, K., Cundy, T.W.: Forest road network design using a trade-off analysis between skidding and road construction costs. Can. J. For. Res. 38(3), 439–448 (2008)CrossRefGoogle Scholar
  8. Clark, M.M., Meller, R.D., McDonald, T.P.: A three-stage heuristic for harvest scheduling with access road network development. For. Sci. 46(2), 204–218 (2000)Google Scholar
  9. D’Amours, S., Rönnqvist, M., Weintraub, A.: Using operational research for supply chain planning in the forest product industry. Inf. Syst. Oper. Res. (INFOR) 46(4), 265–281 (2008)CrossRefGoogle Scholar
  10. Dean, D.J.: Finding optimal routes for networks of harvest site access roads using GIS-based techniques. Can. J. For. Res. 27, 11–22 (1997)CrossRefGoogle Scholar
  11. Deb, K., Sundar, J.: Reference point based multi-objective optimization using evolutionary algorithms. In: Proceedings of the 8th Annual Conference on Genetic and Evolutionary Computation, pp. 635–642 (2006)Google Scholar
  12. Epstein, R., Weintraub, A., Sapunar, P., Nieto, E., Sessions, J.B., Sessions, J., Bustamante, F., Musante, H.: A combinatorial heuristic approach for solving real-size machinery location and road design problems in forestry planning. Oper. Res. 54(6), 1017–1027 (2006)zbMATHCrossRefGoogle Scholar
  13. FPInnovations: Planiroute [online]. (2013). Accessed June 2013
  14. Hansen, P., Mladenovic, N.: Variable neighborhood search. In: Handbook of Metaheuristics, pp. 145–184. Kluwer Academic, Norwell (2003)Google Scholar
  15. Hao, T., Miller-Hooks, E.: Interactive heuristic for practical vehicle routing problem with solution shape constraints. Transp. Res. Rec. 1964, 9–18 (2006)CrossRefGoogle Scholar
  16. Hwang, F.K., Richards, D.S., Winter, P.: The Steiner tree problem. In: Annals of Discrete Mathematics, p. 53 (1992)Google Scholar
  17. Ibaraki, T., Nonobe, K., Yagiura, M. (eds.): Metaheuristics: Progress as Real Problem Solvers. Springer, Heidelberg (2005)Google Scholar
  18. Jaszkiewicz, A., Słowiński, R.: The ‘Light Beam Search’ approach—an overview of methodology applications. Eur. J. Oper. Res. 113(2), 300–314 (1999)zbMATHCrossRefGoogle Scholar
  19. Jones, C.V.: Visualization and Optimization. Kluwer, Dordrecht (1997)Google Scholar
  20. Junior, H.V., Lins, M.P.E.: A win–win approach to multiple objective linear programming problems. J. Oper. Res. Soc. 60(5), 728–733 (2009)zbMATHCrossRefGoogle Scholar
  21. Karlsson, J., Rönnqvist, M., Bergström, J.: An optimization model for annual harvest planning. Can. J. For. Res. 34(8), 1747–1754 (2004)CrossRefGoogle Scholar
  22. Katagiri, H., Sakawa, M., Kato, K., Nishizaki, I.: Interactive multiobjective fuzzy random linear programming: maximization of possibility and probability. Eur. J. Oper. Res. 188(2), 530–539 (2008)zbMATHMathSciNetCrossRefGoogle Scholar
  23. Klau, G.W., Lesh, N., Marks, J., Mitzenmacher, M.: Human-guided search. J. Heuristics 16(3), 289–310 (2010)zbMATHCrossRefGoogle Scholar
  24. Krolak, P., Felts, W., Marble, G.: A man-machine approach toward solving the traveling salesman problem. In: DAC ’70 Proceedings of the 7th Design Automation Workshop, pp. 250–264 (1970)Google Scholar
  25. Lee, J.-Y., Cho, S.-B.: Sparse fitness evaluation for reducing user burden in interactive genetic algorithm. In: Proceedings of the IEEE International Conference on Fuzzy Systems, vol. 2, pp. 998–1003 (1999)Google Scholar
  26. Legües, A.D., Ferland, J.A., Ribeiro, C.C., Vera, J.R., Weintraub, A.: A tabu search approach for solving a difficult forest harvesting machine location problem. Eur. J. Oper. Res. 179(3), 788–805 (2007)zbMATHCrossRefGoogle Scholar
  27. Llorà, X., Sastry, K., Goldberg, D.E., Gupta, A., Lakshmi, L.: Combating user fatigue in iGAs: partial ordering, support vector machines, and synthetic fitness. In: GECCO ’05 Proceedings of the 2005 Conference on Genetic and Evolutionary Computation, pp. 1363–1370 (2005)Google Scholar
  28. Meignan, D., Frayret, J.-M., Pesant, G., Blouin, M.: An automated heuristic approach to forest road location. Can. J. For. Res. 42(12), 2130–2141 (2012)CrossRefGoogle Scholar
  29. Meignan, D., Knust, S., Frayret, J.-M., Pesant, G., Gaud, N.: A review and taxonomy of interactive optimization methods (2014) (submitted)Google Scholar
  30. Mesa, J.A., Boffey, T.B.: A review of extensive facility location in networks. Eur. J. Oper. Res. 95, 592–603 (1996)zbMATHCrossRefGoogle Scholar
  31. Miettinen, K.: Survey of methods to visualize alternatives in multiple criteria decision-making problem. OR Spectr. 36, 3–37 (2012)MathSciNetCrossRefGoogle Scholar
  32. Miettinen, K., Mäkelä, M.M.: Interactive multiobjective optimization system WWW-NIMBUS on the Internet. Comput. Oper. Res. 27(7–8), 709–723 (2000)zbMATHCrossRefGoogle Scholar
  33. Miettinen, K., Ruiz, F., Wierzbicki, A. P.: Introduction to multiobjective optimization: interactive approaches. In: Multiobjective Optimization. Springer, Berlin, pp. 27–58 (2008)Google Scholar
  34. Miettinen, K., Eskelinen, P., Ruiz, F., Luque, M.: NAUTILUS method: an interactive technique in multiobjective optimization based on the nadir point. Eur. J. Oper. Res. 206, 426–434 (2010)zbMATHMathSciNetCrossRefGoogle Scholar
  35. Ropke, S., Pisinger, D.: An adaptive large neighborhood search heuristic for the pickup and delivery problem with time windows. Transp. Sci. 40(4), 455–472 (2006)CrossRefGoogle Scholar
  36. Stückelberger, J., Heinimann, H.R., Chung, W.: Improved road network design models with the consideration of various link patterns and road design elements. Can. J. For. Res. 37(11), 2281–2298 (2007)CrossRefGoogle Scholar
  37. Takagi, H.: Interactive evolutionary computation: fusion of the capabilities of EC optimization and human evaluation. Proc. IEEE 89(9), 1275–1296 (2001)CrossRefGoogle Scholar
  38. Tamir, A., Lowe, T.J.: The generalized p-forest problem on a tree network. Networks 22, 217–230 (1992)zbMATHMathSciNetCrossRefGoogle Scholar
  39. Voudouris, C., Tsang, E.P.K.: Guided local search. In: Handbook of Metaheuristics, pp. 185–218 (2003)Google Scholar
  40. Weintraub, A., Murray, A.T.: Review of combinatorial problems induced by spatial forest harvesting planning. Discret. Appl. Math. 154(5), 867–879 (2006)zbMATHMathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • David Meignan
    • 1
  • Jean-Marc Frayret
    • 2
  • Gilles Pesant
    • 3
  1. 1.Department of Mathematics and Computer ScienceUniversity of OsnabrückOsnabrückGermany
  2. 2.Department of Mathematical and Industrial EngineeringÉcole Polytechnique de MontréalMontrealCanada
  3. 3.Department of Computer and Software EngineeringÉcole Polytechnique de MontréalMontrealCanada

Personalised recommendations