Advertisement

Journal of Heuristics

, Volume 21, Issue 6, pp 719–749 | Cite as

A multiple neighborhood search for dynamic memory allocation in embedded systems

  • María Soto
  • André Rossi
  • Marc Sevaux
Article

Abstract

Memory allocation has a significant impact on power consumption in embedded systems. We address the dynamic memory allocation problem, in which memory requirements may change at each time interval. This problem has previously been addressed using integer linear programming and iterative approaches which build a solution interval by interval taking into account the requirements of partial time intervals. A GRASP that builds a solution for all time intervals has been proposed as a global approach. Due to the complexity of this problem, the GRASP algorithm solution quality decreases for larger instances. In order to overcome this drawback, we propose a multiple neighborhood search hybridized with a Tabu Search and enhanced by complex ejection chains. The proposed approach outperforms all previously developed methods devised for the dynamic memory allocation problem.

Keywords

Electronic design Dynamic memory allocation MNS  TS  Ejection chains 

References

  1. Atienza, D., Mamagkakis, S., Poletti, F., Mendias, J., Catthoor, F., Benini, L., Soudris, D.: Efficient system-level prototyping of power-aware dynamic memory managers for embedded systems. Integr., VLSI J. 39(2), 113–130 (2006)CrossRefGoogle Scholar
  2. Battiti, R.: The reactive tabu search. ORSA J. Comput. 6(2), 126–140 (1994)CrossRefMATHGoogle Scholar
  3. Benlic, U., Hao, J.-K.: An effective multilevel tabu search approach for balanced graph partitioning. Comput. Oper. Res. 38(7), 1066–1075 (2011)MathSciNetCrossRefMATHGoogle Scholar
  4. Besbes, H., Jebara, S.F.: A solution to reduce noise enhancement in pre-whitened lms-type algorithms: the double direction adaptation. In: Proceedings of Control, Communications and Signal Processing, 2004, pp. 717–720. (2004)Google Scholar
  5. Blazy, S., Robillard, B., Appel, A.: Formal verification of coalescing graph-coloring register allocation. In: Proceedings of European Symposium On Programming, pp. 145–164. Paphos, Chypre (2010)Google Scholar
  6. Brenner, U., Struzyna, M., Vygen, J.: Bonnplace: Placement of leading-edge chips by advanced combinatorial algorithms. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 27(9), 1607–1620 (2008)CrossRefGoogle Scholar
  7. Catthoor, F., Wuytack, S., De Greef, E., Balasa, F., Nachtergaele, L., Vandecappelle, A.: Custom Memory Management Methodology. Kluwer Academic Publishers, Boston (1998)CrossRefMATHGoogle Scholar
  8. Ceschia, S., Gaspero, L., Schaerf, A.: Tabu search techniques for the heterogeneous vehicle routing problem with time windows and carrier-dependent costs. J. Sched. 14(6), 601–615 (2011)MathSciNetCrossRefGoogle Scholar
  9. Chang, C.-T.: Optimization approach for data allocation in multidisk database. Eur. J. Oper. Res. 143(1), 210–217 (2002)CrossRefMATHGoogle Scholar
  10. Chiarandini, M., Paquete, L., Preuss, M., Ridge, E.: Experiments on metaheuristics: Methodological overview and open issues. Technical Report DMF-2007-03-003, The Danish Mathematical Society, Denmark (2007)Google Scholar
  11. Chimientia, A., Fanucci, L., Locatellic, R., Saponarac, S.: VLSI architecture for a low-power video codec system. Microelectron. J. 33(5), 417–427 (2002)CrossRefGoogle Scholar
  12. Conover, W.J.: Practical Nonparametric Statistic, 3rd edn. Wiley, New York (1999)Google Scholar
  13. Coussy, P., Casseau, E., Bomel, P., Baganne, A., Martin, E.: A formal method for hardware IP design and integration under I/O and timing constraints. ACM Trans. Embed. Comput. Syst. 5(1), 29–53 (2006)CrossRefGoogle Scholar
  14. Coussy, P., Rossi, A., Sevaux, M., Sörensen, K., Trabelsi, K.: VNS for high-level synthesis. In: Proceedings of 8th Metaheuristics International Conference, MIC 2009, pp. 173:1–173:10. Hamburg, Germany (2009)Google Scholar
  15. Créput, J.-C., Dafali, R., Rossi, A., Sevaux, M., Zerbo, B.: From simple heuristics to evolutionary approach for routing messages in a NoC. In: Proceedings of 10th anniversary of the metaheuristic community, pp. 55–57. Lorient, France (2010)Google Scholar
  16. Dafali, R., Diguet, J.-Ph., Sevaux, M.: Key research issues for reconfigurable Network-on-Chip. In: Proceedings of the International Conference on ReConFigurable Computing and FPGAs, ReConFig’08, pp. 181–186. Cancun, Mexico (2008)Google Scholar
  17. Dantzig, G.: Discrete-variable extremum problems. Oper. Res. 5(2), 266–277 (1957)MathSciNetCrossRefGoogle Scholar
  18. Demeester, P., Souffriau, W., De Causmaecker, P., Vanden Berghe, G.: A hybrid tabu search algorithm for automatically assigning patients to beds. Artif. Intell. Med. 48(1), 61–70 (2010)CrossRefGoogle Scholar
  19. Di Gaspero, L., Schaerf, A.: Multi-neighbourhood local search with application to course timetabling. In: Proceedings of the 4th International Conference on the Practice and Theory of Automated Timetabling (PATAT-2002), number 2740 in Lecture Notes in Computer Science, pp. 262–275. Springer-Verlag (2003)Google Scholar
  20. Di Gaspero, L., Schaerf, A.: Neighborhood portfolio approach for local search applied to timetabling problems. J. Math. Modell. Algorithms 5(1), 65–89 (2006)MathSciNetCrossRefMATHGoogle Scholar
  21. Dorf, R.C.: Systems, Controls, Embedded Systems, Energy, and Machines. The Electrical Engineering Handbook, 3rd edn. Taylor and Francis, Boca Raton (2010)Google Scholar
  22. Friedman, M.: The use of ranks to avoid the assumption of normality implicit in the analysis of variance. J. Am. Stat. Assoc. 32, 675–701 (1937)CrossRefGoogle Scholar
  23. Glover, F., Laguna, M.: Tabu Search. Kluwer Academic Publisher, Norwell (1997)CrossRefMATHGoogle Scholar
  24. Hansen, P., Mladenović, N., Moreno Pérez, J.A.: Variable neighbourhood search: methods and applications. 4OR 6(4), 319–360 (2008)MathSciNetCrossRefMATHGoogle Scholar
  25. Hansen, P., Mladenović, N.: Variable neighborhood search: Principles and applications. Eur. J. Oper. Res. 130(3), 449–467 (2001)CrossRefMATHGoogle Scholar
  26. Hansen, P., Mladenović, N.: Industrial applications of the variable neighborhood search metaheuristic. In: Zaccour, G. (ed.) Decision and Control in Management Science. Advances in Computational Management Science, vol. 4, pp. 261–273. Springer, US (2002)Google Scholar
  27. Idrissi Aouad, M., Idoumghar, L., Schott, R., Zendra, O.: Reduction of Energy Consumption in Embedded Systems: A Hybrid Evolutionary Algorithm. In: Proceedings of the 3rd International Conference on Metaheuristics and Nature Inspired Computing, vol. 95. Djerba, Tunisie (2010a)Google Scholar
  28. Idrissi Aouad, M., Schott, R., Zendra, O.: A Tabu Search Heuristic for Scratch-Pad Memory Management. In: Proceedings of the International Conference on Software Engineering and Technology, pp. 386–390. Rome, Italie (2010b)Google Scholar
  29. Jin, J., Crainic, T.G., Lokketangen, A.: A parallel multi-neighborhood cooperative tabu search for capacitated vehicle routing problems. Eur. J. Oper. Res. 222(3), 441–451 (2012)CrossRefGoogle Scholar
  30. Julien, N., Laurent, J., Senn, E., Martin, E.: Power consumption modeling and characterization of the TI C6201. IEEE Micro 23(5), 40–49 (2003)CrossRefGoogle Scholar
  31. Korte, B., Vygen, J.: Combinatorial problems in chip design. In: Tóth, G., Katona, G., Lovász, L., Pálfy, P., Recski, A., Stipsicz, A., Szász, D., Miklós, D., Grötschel, M., Sági, G. (eds.) Building Bridges. Bolyai Society Mathematical Studies, vol. 19, pp. 333–368. Springer, Berlin Heidelberg (2008)Google Scholar
  32. Krause, P.K.: The complexity of register allocation. Discret. Appl. Math. 168, 51–59 (2014)CrossRefMATHGoogle Scholar
  33. Lin, M.-H.: An optimal workload-based data allocation approach for multidisk databases. Data Knowl. Eng. 68(5), 499–508 (2009)CrossRefGoogle Scholar
  34. Mahajan, A., Ali, M.: Hybrid evolutionary algorithm for the graph coloring register allocation problem for embedded systems. In: Transactions on Computational Science V. volume 5540 of Lecture Notes in Computer Science, pp. 206–219. Springer, Berlin/Heidelberg (2009)Google Scholar
  35. Mladenović, N., Hansen, P.: Variable neighbourhood decomposition search. Comput. Oper. Res. 24(11), 1097–1100 (1997)MathSciNetCrossRefMATHGoogle Scholar
  36. Pereira, Q., Magno, F., Jens, P.: Register allocation by puzzle solving. SIGPLAN Not 43(6), 216–226 (2008)CrossRefGoogle Scholar
  37. Porumbel, D.: DIMACS graphs: Benchmark instances and best upper bound (2009)Google Scholar
  38. Porumbel, D., Hao, J.-K., Kuntz, P.: Diversity control and multi-parent recombination for evolutionary graph coloring algorithms. In: Proceedings of the EvoCOP Evolutionay Computation in Combinatorial Optimization, pp. 121–132. Tübingen, Germany (2009)Google Scholar
  39. Reinholz, A., Schneider, H.: A hybrid (1+1)-evolutionary strategy for the open vehicle routing problem. In: Di Gaspero, L., Schaerf, A., Stützle, T. (eds.) Advances in Metaheuristics. Operations Research/Computer Science Interfaces Series, vol. 53. Springer, New York (2013)Google Scholar
  40. Sevaux, M., Rossi, A., Soto, M., Duarte, A., Martí, R.: Grasp with ejection chains for the dynamic memory allocation in embedded systems. Soft Comput. 18(8), 1515–1527 (2014)CrossRefGoogle Scholar
  41. Sevaux, M., Singh, A., Rossi, A.: Tabu search for multiprocessor scheduling: application to high level synthesis. Asia-Pac. J. Oper. Res. 28(2), 201–212 (2011)MathSciNetCrossRefMATHGoogle Scholar
  42. Sörensen, K., Sevaux, M., Schittekat, P.: “Multiple neighbourhood” search in commercial vrp packages: Evolving towards self-adaptive methods. In: Cotta, C., Sevaux, M., Sörensen, K. (eds.) Adaptive and Multilevel Metaheuristics. Studies in Computational Intelligence, vol. 136, pp. 239–253. Springer, Berlin (2008)CrossRefGoogle Scholar
  43. Soto, M., Rossi, A., Sevaux, M.: Two upper bounds on the chromatic number. In: Proceedings of the CTW09 8th Cologne-Twente Workshop on Graphs and Combinatorial Optimization, pp. 191–194. Paris, France (2009)Google Scholar
  44. Soto, M., Rossi, A., Sevaux, M.: Métaheuristiques pour l’allocation de mémoire dans les systèmes embarqués. In: Proceedings of the ROADEF 11e congrès de la société Française de Recherche Opérationelle est d’Aide à la Décision, pp. 35–43. Toulouse, France (2010)Google Scholar
  45. Soto, M., Rossi, A., Sevaux, M.: A mathematical model and a metaheuristic approach for a memory allocation problem. J. Heuristics 18(1), 149–167 (2011)CrossRefGoogle Scholar
  46. Soto, M., Rossi, A., Sevaux, M.: Two iterative metaheuristic approaches to dynamic memory allocation for embedded systems. In: Merz, P., Hao, J.-K. (eds) Evolutionary Computation in Combinatorial Optimization, Proceedings of the 11th European Conference, EvoCOP 2011. Torino, Italy, April 27-29 (2011). Lecture Notes in Computer Science, vol. 6622, pp. 250–261. Springer (2011)Google Scholar
  47. Soto, M., Rossi, A., Sevaux, M.: Iterative approaches for a dynamic memory allocation problem in embedded systems. Eur. J. Oper. Res. 231(1), 34–42 (2013)CrossRefGoogle Scholar
  48. Soto, M., Sevaux, M., Rossi, A., Laurent, J.: Memory Allocation Problems in Embedded Systems: Optimization Methods. Wiley-ISTE, Paris, London (2013)Google Scholar
  49. Stützle, T.: Applying iterated local search to the permutation flow shop problem. Technical report (1998)Google Scholar
  50. Taillard, E.: Paper: Robust taboo search for the quadratic assignment problem. Parallel Comput. 17(4–5), 443–455 (1991)MathSciNetCrossRefGoogle Scholar
  51. Trabelsi, K., Sevaux, M., Coussy, P., Rossi, A., Sörensen, K.: Advanced Metaheuristics for high-level synthesis. Metaheuristics. Springer, Berlin (2010)Google Scholar
  52. Wuytack, S., Catthoor, F., Nachtergaele, L., De Man, H.: Power exploration for data dominated video application. In: Proceedings of the IEEE International Symposium on Low Power Electronics and Design, pp. 359–364. Monterey, CA, USA (1996)Google Scholar
  53. Xuan, D., Zongbin, L., Xinqin, G., Lijun, Y.: Optimizing the performance of chip shooter machine based on improved genetic algorithm. In: Proceedings of 7th World Congress on Intelligent Control and Automation, pp. 2849–2853. Chongqing, China (2008)Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Université de Bretagne-Sud – Lab-STICC, CNRS, UMR 6285 Centre de rechercheLorient CedexFrance

Personalised recommendations