Journal of Heuristics

, Volume 22, Issue 4, pp 475–505 | Cite as

A memetic algorithm for the virtual network mapping problem

  • Johannes Inführ
  • Günther Raidl


The Internet has ossified. It has lost its capability to adapt as requirements change. A promising technique to solve this problem is the introduction of network virtualization. Instead of directly using a single physical network, working just well enough for a limited range of applications, multiple virtual networks are embedded on demand into the physical network, each of them perfectly adapted to a specific application class. The challenge lies in mapping the different virtual networks with all the resources they require into the available physical network, which is the core of the virtual network mapping problem. In this work, we introduce a memetic algorithm that significantly outperforms the previously best algorithms for this problem. We also offer an analysis of the influence of different problem representations and in particular the implementation of a uniform crossover for the grouping genetic algorithm that may also be interesting outside of the virtual network mapping domain. Furthermore, we study the influence of different hybridization techniques and the behaviour of the developed algorithm in an online setting.


Virtual network mapping Memetic algorithm Hybrid metaheuristic Grouping genetic algorithm 



This work has been funded by the Vienna Science and Technology Fund (WWTF) through project ICT10-027.


  1. Alonso-Garrido, O., Salcedo-Sanz, S., Agustín-Blas, L.E., Ortiz-García, E.G., Pérez-Bellido, A.M., Portilla-Figueras, J.A.: A hybrid grouping genetic algorithm for the multiple-type access node location problem. In: Corchado, E., Yin, H. (eds.) Intelligent Data Engineering and Automated Learning—IDEAL 2009. Lecture Notes in Computer Science, vol. 5788, pp. 376–383. Springer, Berlin (2009)CrossRefGoogle Scholar
  2. Anderson, T., Peterson, L., Shenker, S., Turner, J.: Overcoming the internet impasse through virtualization. Computer 38(4), 34–41 (2005)CrossRefGoogle Scholar
  3. Berl, A., Fischer, A., de Meer, H.: Virtualisierung im future internet. Informatik-Spektrum 33, 186–194 (2010)CrossRefGoogle Scholar
  4. Brown, E.C., Sumichrast, R.T.: Impact of the replacement heuristic in a grouping genetic algorithm. Comput. Oper. Res. 30(11), 1575–1593 (2003)CrossRefzbMATHGoogle Scholar
  5. Carlson, M., Weiss, W., Blake, S., Wang, Z., Black, D., Davies, E.: An Architecture for Differentiated Services. IETF, RFC 2475 (1998)Google Scholar
  6. Chowdhury, N.M.M.K., Boutaba, R.: A survey of network virtualization. Comput. Netw. 54(5), 862–876 (2010)CrossRefzbMATHGoogle Scholar
  7. Chowdhury, N.M.M.K., Rahman, M.R., Boutaba, R.: Virtual network embedding with coordinated node and link mapping. In: 28th IEEE International Conference on Computer Communications (INFOCOM 2009), IEEE. pp 783–791 (2009)Google Scholar
  8. Chun, B., Culler, D., Roscoe, T., Bavier, A., Peterson, L., Wawrzoniak, M., Bowman, M.: PlanetLab: an overlay testbed for broad-coverage services. ACM SIGCOMM Comput. Commun. Rev. 33, 3–12 (2003)CrossRefGoogle Scholar
  9. Deering, S., Hinden, R.: Internet Protocol, Version 6 (IPv6) Specification, RFC 2460. (1998)
  10. Evelyn, C.B., Cliff, T.R., Arthur, E.C.: A grouping genetic algorithm for the multiple traveling salesperson problem. Int. J. Inf. Technol. Decis. Mak. 6(02), 333–347 (2007)CrossRefzbMATHGoogle Scholar
  11. Fajjari, I., Aitsaadi, N., Pujolle, G., Zimmermann, H.: Adaptive-VNE: A flexible resource allocation for virtual network embedding algorithm. In: IEEE Global Communications Conference (GLOBECOM 2012), IEEE. pp 2640–2646 (2012)Google Scholar
  12. Falkenauer, E., Delchambre, A.: A genetic algorithm for bin packing and line balancing. In: IEEE International Conference on Robotics and Automation, IEEE. pp 1186–1192 (1992)Google Scholar
  13. Feltl, H., Raidl, G.R.: An improved hybrid genetic algorithm for the generalized assignment problem. In: Proceedings of the 2004 ACM Symposium on Applied Computing, ACM. pp 990–995 (2004)Google Scholar
  14. GENInet.: Global Environment for Network Innovations. (2012)
  15. Gold, R., Gunningberg, P., Tschudin, C.: A virtualized link layer with support for indirection. In: Proceedings of the ACM SIGCOMM Workshop on Future Directions in Network Architecture, ACM. pp 28–34 (2004)Google Scholar
  16. Gupta, A., Kleinberg, J., Kumar, A., Rastogi, R., Yener, B.: Provisioning a virtual private network: a network design problem for multi-commodity flow. In: STOC ’01, ACM. pp 389–398. New York (2001)Google Scholar
  17. Hansen, P., Mladenović, N.: Variable neighborhood search: principles and applications. Eur. J. Oper. Res. 130(3), 449–467 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  18. Houidi, I., Louati, W., Zeghlache, D.: A Distributed virtual network mapping algorithm. In: IEEE International Conference on Communications (ICC ’08), IEEE. pp 5634–5640 (2008)Google Scholar
  19. Inführ, J.: Optimization challenges of the future federated internet. PhD thesis, Vienna University of Technology, Institute of Computer Graphics and Algorithms, Vienna, Austria (2013)Google Scholar
  20. Inführ, J., Raidl, G.R.: Introducing the virtual network mapping problem with delay, routing and location constraints. In: Pahl, J., Reiners, T., Voß, S. (eds.) Network Optimization: 5th International Conference (INOC 2011). Lecture Notes in Computer Science, 6701st edn, pp. 105–117. Springer, Hamburg, Germany (2011)Google Scholar
  21. Inführ, J., Raidl, G.R.: The Virtual Network Mapping Problem Benchmark Set and Achieved Solutions by Heuristic and Exact Methods. (2011b)
  22. Inführ, J., Raidl, G.R.: A memetic algorithm for the virtual network mapping problem. In: Lau, H., Van Hentenryck, P., Raidl, G. (eds.) Proceedings of the 10th Metaheuristics International Conference, pp 28/1-28/10, Singapore (2013a)Google Scholar
  23. Inführ, J., Raidl, G.R.: Solving the virtual network mapping problem with construction heuristics, local search, and variable neighborhood descent. In: Middendorf, M., Blum, C. (eds.) Evolutionary Computation in Combinatorial Optimisation - 13th European Conference, EvoCOP 2013. Lecture Notes in Computer Science, 7832nd edn, pp. 250–261. Springer, Berlin (2013)Google Scholar
  24. Larrañaga, P., Kuijpers, C.M.H., Murga, R.H., Inza, I., Dizdarevic, S.: Genetic algorithms for the travelling salesman problem: a review of representations and operators. Artif. Intell. Rev. 13, 129–170 (1999)CrossRefGoogle Scholar
  25. Lu, J., Turner, J.: Efficient Mapping of Virtual Networks Onto a Shared Substrate. Tech. rep. Washington University in St. Louis, (2006). WUCSE-2006-35Google Scholar
  26. Moscato, P., Cotta, C.: A modern introduction to memetic algorithms. In: Gendreau, M., Potvin, J. (eds.) Handbook of Metaheuristics, International Series in Operations Research & Management Science, 146th edn, pp. 141–183. Springer, Berlin (2010)Google Scholar
  27. Moscato, P., Norman, M.G.: A memetic approach for the traveling salesman problem implementation of a computational ecology for combinatorial optimization on message-passing systems. In: Proceedings of International Conference on Parallel Computing and Transputer Applications, vol. 1, pp. 177–186. IOS Press (1992)Google Scholar
  28. National Research Council: Looking Over the Fence at Networks. National Academy Press, Washington, DC (2001)Google Scholar
  29. Qing, S., Qi, Q., Wang, J., Xu, T., Liao, J.: Topology-aware virtual network embedding through Bayesian network analysis. In: IEEE Global Communications Conference (GLOBECOM 2012), pp. 2621–2627. IEEE (2012)Google Scholar
  30. Radcliffe, N., Surry, P.: Formal Memetic Algorithms. In: Fogarty, T. (ed.) Evolutionary Computing. Lecture Notes in Computer Science, vol. 865, pp. 1–16. Springer, Berlin (1994)Google Scholar
  31. Ramakrishnan, K.K., Floyd, S., Black, D.: The Addition of Explicit Congestion Notification (ECN) to IP. IETF, RFC. 3168 (2001)Google Scholar
  32. Razzaq, A., Rathore, M.S.: An approach towards resource efficient virtual network embedding. In: Proceedings of the 2010 2nd International Conference on Evolving Internet, IEEE Computer Society, INTERNET ’10, pp 68–73 (2010)Google Scholar
  33. Ricci, R., Alfeld, C., Lepreau, J.: A solver for the network testbed mapping problem. Spec. Interest Group Data Commun. Comput. Commun. Rev. 33(2), 65–81 (2003)Google Scholar
  34. Schwerdel, D., Günther, D., Henjes, R., Reuther, B., Müller, P.: German-lab experimental facility. In: Berre, A., Gómez-Pérez, A., Tutschku, K., Fensel, D. (eds.) Future Internet—FIS 2010. Lecture Notes in Computer Science, 6369th edn, pp. 1–10. Springer, Berlin (2010)Google Scholar
  35. Sivanandam, S.N., Deepa, S.N.: Introduction to Genetic Algorithms, 1st edn. Springer Publishing Company, Incorporated, Berlin (2007)zbMATHGoogle Scholar
  36. Szeto, W., Iraqi, Y., Boutaba, R.: A multi-commodity flow based approach to virtual network resource allocation. In: Global Telecommunications Conference (GLOBECOM 2003), IEEE. vol. 6, pp. 3004–3008 (2003)Google Scholar
  37. Touch, J., Wang, Y., Eggert, L., Finn, G.: A Virtual Internet Architecture. ISI Technical Report ISI-TR-2003-570 (2003)Google Scholar
  38. Turner, J.S., Taylor, D.E.: Diversifying the internet. In: IEEE Global Telecommunications Conference (GLOBECOM 2005), IEEE. vol. 2, pp. 755–760 (2005)Google Scholar
  39. Tutschku, K.: Towards the future internet: virtual networks for convergent services. e & i Elektrotechnik und Informationstechnik 126(7–8), 250–259 (2009)CrossRefGoogle Scholar
  40. Tutschku, K., Tran-Gia, P., Andersen, F.: Trends in network and service operation for the emerging future internet. AEU-Int. J. Electron. Commun. 62(9), 705–714 (2008)CrossRefGoogle Scholar
  41. Wang, Z., Han, Y., Lin, T., Tang, H., Ci, S.: Virtual network embedding by exploiting topological information. In: IEEE Global Communications Conference (GLOBECOM 2012), IEEE. pp 2603–2608 (2012)Google Scholar
  42. Yeow, W., Westphal, C., Kozat, U.: Designing and embedding reliable virtual infrastructures. In: Proceedings of the Second ACM Special Interest Group on Data Communication Workshop on Virtualized Infrastructure Systems and Architectures, ACM. New York, NY, USA, VISA ’10. pp. 33–40 (2010)Google Scholar
  43. Zhang, S., Wu, J., Lu, S.: Virtual network embedding with substrate support for parallelization. In: IEEE Global Communications Conference (GLOBECOM 2012), IEEE. pp. 2615–2620 (2012a)Google Scholar
  44. Zhang, Z., Su, S., Niu, X., Ma, J., Cheng, X., Shuang, K.: Minimizing electricity cost in geographical virtual network embedding. In: IEEE Global Communications Conference (GLOBECOM 2012), IEEE. pp. 2609–2614 (2012b)Google Scholar
  45. Zhu, Y., Ammar, M.: Algorithms for assigning substrate network resources to virtual network components. In: 25th IEEE International Conference on Computer Communications (INFOCOM 2006), IEEE. pp. 1–12 (2006)Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Algorithms and Data Structures GroupVienna University of TechnologyViennaAustria

Personalised recommendations