Journal of Heuristics

, Volume 20, Issue 2, pp 211–234 | Cite as

BDD-based heuristics for binary optimization

  • David Bergman
  • Andre A. Cire
  • Willem-Jan van Hoeve
  • Tallys Yunes
Article

Abstract

In this paper we introduce a new method for generating heuristic solutions to binary optimization problems. We develop a technique based on binary decision diagrams. We use these structures to provide an under-approximation to the set of feasible solutions. We show that the proposed algorithm delivers comparable solutions to a state-of-the-art general-purpose optimization solver on randomly generated set covering and set packing problems.

Keywords

Binary decision diagrams Heuristics Set covering  Set packing 

References

  1. Aarts, E., Lenstra, J.K.: Local Search in Combinatorial Optimization. Wiley, New York (1997)MATHGoogle Scholar
  2. Akers, S.B.: Binary decision diagrams. IEEE Trans. Comput. C–27, 509–516 (1978)CrossRefGoogle Scholar
  3. Andersen, H.R., Hadzic, T., Hooker, J.N., Tiedemann, P.: A constraint store based on multivalued decision diagrams. In: Bessière, C. (ed.) Principles and Practice of Constraint Programming (CP 2007). Lecture Notes in Computer Science, vol. 4741, pp 118–132. Springer, New York (2007)Google Scholar
  4. Becker, B., Behle, M., Eisenbrand, F., Wimmer, R.: BDDs in a branch and cut framework. In: Nikoletseas, S. (ed.) Proceedings of the 4th International Workshop on Efficient and Experimental Algorithms (WEA 05). Lecture Notes in Computer Science, vol. 3503, pp 452–463. Springer, New York (2005)Google Scholar
  5. Behle, M., Eisenbrand, F.: 0/1 vertex and facet enumeration with BDDs. In: Proceedings of the Workshop on Algorithm Engineering and Experiments (ALENEX), pp 158–165. SIAM, Philadelphia (2007)Google Scholar
  6. Bergman, D., van Hoeve, W.J., Hooker, J.N.: Manipulating MDD relaxations for combinatorial optimization. In: Achterberg, T., Beck, J. (eds.) CPAIOR. Lecture Notes in Computer Science, vol. 6697, pp 20–35. Springer, New York (2011)Google Scholar
  7. Bergman, D., Cire, A.A., van Hoeve, W.J., Hooker, J.N.: Variable ordering for the application of BDDs to the maximum independent set problem. In: Beldiceanu, N., Jussien, N., Pinson, E. (eds.) 9th International Conference on Integration of AI and OR Techniques in Constraint Programming for Combinatorial Optimization Problems (CPAIOR’12). Lectures Notes in Computer Science, vol. 7298, pp 34–49. Springer, Nantes (2012)Google Scholar
  8. Berthold, T.: Primal heuristics for mixed integer programs. Master’s thesis, Zuze Institute, Berlin (2006)Google Scholar
  9. Bertsimas, D., Iancu, D.A., Katz, D.: A new local search algorithm for binary optimization. INFORMS J. Comput. 25(2), 208–221 (2013)CrossRefMathSciNetGoogle Scholar
  10. Bryant, R.E.: Graph-based algorithms for Boolean function manipulation. IEEE Trans. Comput. C–35, 677–691 (1986)CrossRefGoogle Scholar
  11. Caprara, A., Fischetti, M., Toth, P.: Algorithms for the set covering problem. Ann. Oper. Res. 98, 2000 (1998)MathSciNetGoogle Scholar
  12. Corso, G.M.D., Manzini, G.: Finding exact solutions to the bandwidth minimization problem. Computing 62(3), 189–203 (1999)CrossRefMATHMathSciNetGoogle Scholar
  13. Eckstein, J., Nediak, M.: Pivot, cut, and dive: a heuristic for 0–1 mixed integer programming. J. Heuristics 13(5), 471–503 (2007)CrossRefGoogle Scholar
  14. Feige, U.: Approximating the bandwidth via volume respecting embeddings. J. Comput. Syst. Sci. 60(3), 510–539 (2000)CrossRefMATHMathSciNetGoogle Scholar
  15. Fischetti, M., Glover, F., Lodi, A.: The feasibility pump. Math. Program 104(1), 91–104 (2005)CrossRefMATHMathSciNetGoogle Scholar
  16. Fulkerson, D.R., Gross, O.A.: Incidence matrices and interval graphs. Pac. J. Math. 15, 835–855 (1965)CrossRefMATHMathSciNetGoogle Scholar
  17. Glover, F., Laguna, M.: General purpose heuristics for integer programming—part I. J. Heuristics 2(4), 343–358 (1997a)CrossRefMATHGoogle Scholar
  18. Glover, F., Laguna, M.: General purpose heuristics for integer programming—part II. J. Heuristics 3(2), 161–179 (1997b)CrossRefMATHGoogle Scholar
  19. Grosso, A., Locatelli, M., Pullan, W.: Simple ingredients leading to very efficient heuristics for the maximum clique problem. J. Heuristics 14(6), 587–612 (2008)CrossRefGoogle Scholar
  20. Gurari, E.M., Sudborough, I.H.: Improved dynamic programming algorithms for bandwidth minimization and the mincut linear arrangement problem. J. Algorithms 5, 531–546 (1984)CrossRefMATHMathSciNetGoogle Scholar
  21. Hadzic, T., Hooker, J.N.: Postoptimality analysis for integer programming using binary decision diagrams. In: Presented at GICOLAG Workshop (Global Optimization: Integrating Convexity, Optimization, Logic Programming, and Computational Algebraic Geometry). Technical Report. Carnegie Mellon University, Vienna (2006)Google Scholar
  22. Hadzic, T., Hooker, J.N.: Cost-bounded binary decision diagrams for 0–1 programming. In: Loute, E., Wolsey, L. (eds.) Proceedings of the International Workshop on Integration of Artificial Intelligence and Operations Research Techniques in Constraint Programming for Combinatorial Optimization Problems (CPAIOR 2007). Lecture Notes in Computer Science, vol. 4510, pp 84–98. Springer, New York (2007)Google Scholar
  23. Hadzic, T., Hooker, J.N., O’Sullivan, B., Tiedemann, P.: Approximate compilation of constraints into multivalued decision diagrams. In: Stuckey, P.J. (ed.) Principles and Practice of Constraint Programming (CP 2008). Lecture Notes in Computer Science, vol. 5202, pp 448–462. Springer, New York (2008)Google Scholar
  24. Hoda, S., Hoeve, W.J., Hooker, J.N.: A systematic approach to MDD-based constraint programming. In: Proceedings of the 16th International Conference on Principles and Practices of Constraint Programming. Lecture Notes in Computer Science, vol. 6308, pp 266–280. Springer, New York (2010)Google Scholar
  25. Hu, A.J.: Techniques for efficient formal verification using binary decision diagrams. Thesis CS-TR-95-1561, Department of Computer Science, Stanford University (1995)Google Scholar
  26. Lee, C.Y.: Representation of switching circuits by binary-decision programs. Bell Syst. Tech. J. 38, 985–999 (1959)CrossRefGoogle Scholar
  27. Martí, R., Laguna, M., Glover, F., Campos, V.: Reducing the bandwidth of a sparse matrix with tabu search. Eur. J. Oper. Res. 135(2), 450–459 (2001)CrossRefMATHGoogle Scholar
  28. Martí, R., Campos, V., Piñana, E.: A branch and bound algorithm for the matrix bandwidth minimization. Eur. J. Oper. Res. 186(2), 513–528 (2008)CrossRefMATHGoogle Scholar
  29. Piñana, E., Plana, I., Campos, V., Martí, R.: GRASP and path relinking for the matrix bandwidth minimization. Eur. J. Oper. Res. 153(1), 200–210 (2004)CrossRefMATHGoogle Scholar
  30. Pullan, W., Mascia, F., Brunato, M.: Cooperating local search for the maximum clique problem. J. Heuristics 17(2), 181–199 (2011)CrossRefGoogle Scholar
  31. Saxe, J.: Dynamic programming algorithms for recognizing small-bandwidth graphs in polynomial time. SIAM J. Algebraic Discrete Methods 1, 363–369 (1980)CrossRefMATHMathSciNetGoogle Scholar
  32. Wegener, I.: Branching programs and binary decision diagrams: theory and applications. In: SIAM Monographs on Discrete Mathematics and Applications. Society for Industrial and Applied Mathematics, Philadelphia (2000)Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • David Bergman
    • 1
  • Andre A. Cire
    • 1
  • Willem-Jan van Hoeve
    • 1
  • Tallys Yunes
    • 2
  1. 1.Tepper School of BusinessCarnegie Mellon UniversityPittsburghUSA
  2. 2.School of Business AdministrationUniversity of MiamiCoral GablesUSA

Personalised recommendations