Journal of Heuristics

, Volume 18, Issue 6, pp 919–938 | Cite as

Variable neighborhood search with ejection chains for the antibandwidth problem

  • Manuel Lozano
  • Abraham Duarte
  • Francisco Gortázar
  • Rafael Martí
Original Paper


In this paper, we address the optimization problem arising in some practical applications in which we want to maximize the minimum difference between the labels of adjacent elements. For example, in the context of location models, the elements can represent sensitive facilities or chemicals and their labels locations, and the objective is to locate (label) them in a way that avoids placing some of them too close together (since it can be risky). This optimization problem is referred to as the antibandwidth maximization problem (AMP) and, modeled in terms of graphs, consists of labeling the vertices with different integers or labels such that the minimum difference between the labels of adjacent vertices is maximized. This optimization problem is the dual of the well-known bandwidth problem and it is also known as the separation problem or directly as the dual bandwidth problem. In this paper, we first review the previous methods for the AMP and then propose a heuristic algorithm based on the variable neighborhood search methodology to obtain high quality solutions. One of our neighborhoods implements ejection chains which have been successfully applied in the context of tabu search. Our extensive experimentation with 236 previously reported instances shows that the proposed procedure outperforms existing methods in terms of solution quality.


Metaheuristics VNS Layout problems 


  1. Aiex, R.M., Resende, M.G.C., Ribeiro, C.C.: Probability distribution of solution time in GRASP: An experimental investigation. J. Heuristics 8, 343–373 (2002)MATHCrossRefGoogle Scholar
  2. Bansal, R., Srivastava, K.: Memetic algorithm for the antibandwidth maximization problem. J. Heuristics 17, 39–60 (2011)MATHCrossRefGoogle Scholar
  3. Burkard, R.E., Donnani, H., Lin, Y., Rote, G.: The obnoxious center problem on a tree. SIAM J. Discret. Math. 14(4), 498–590 (2001)MATHCrossRefGoogle Scholar
  4. Cappanera, P.: A survey on obnoxious facility location problems. Technical Report TR-99-11, Dipartimento di Informatica, Università di Pisa (1999)Google Scholar
  5. Díaz, J., Petit, J., Serna, M.: A survey of graph layout problems. J. ACM Comput. Surv. 34(3), 313–356 (2002)CrossRefGoogle Scholar
  6. Dobrev, S., Královic, R., Pardubská, D., Török, L., Vrt’o, I.: Antibandwidth and cyclic antibandwidth of Hamming graphs. Electron. Notes Discret. Math. 34, 295–300 (2009)CrossRefGoogle Scholar
  7. Duarte, A., Martí, R., Resende, M.G.C., Silva, R.M.A.: GRASP with path relinking heuristics for the antibandwidth problem. Networks 58(3), 171–189 (2011)MathSciNetMATHCrossRefGoogle Scholar
  8. Duarte, A., Escudero, L.F., Martí, R., Mladenovic, N., Pantrigo, J.J., Sánchez-Oro, J.: Variable neighborhood search for the vertex separation problem. Comput. Oper. Res. 39(12), 3247–3255 (2012)MathSciNetCrossRefGoogle Scholar
  9. Glover, F., Laguna, M.: Tabu Search. Kluwer, Norwell (1997)MATHCrossRefGoogle Scholar
  10. Hale, W.K.: Frequency assignment: theory and applications. Proc. IEEE 68, 1497–1514 (1980)CrossRefGoogle Scholar
  11. Hansen, P., Mladenovic, N., Brimberg, J., Moreno-Pérez, J.A.: Variable neighborhood search. In: Gendreau, M., Potvin, J.-Y. (eds.) Handbook of Metaheuristics, 2nd edn, pp. 61–86. Springer, Heidelberg (2010)Google Scholar
  12. Leung, J.Y.-T., Vornberger, O., Witthoff, J.D.: On some variants of the bandwidth minimization problem. SIAM J. Comput. 13, 650–667 (1984)MathSciNetMATHCrossRefGoogle Scholar
  13. Martí, R., Duarte, A., Laguna, M.: Advanced scatter search for the max-cut problem. INFORMS J. Comput. 21(1), 26–38 (2009)MathSciNetMATHCrossRefGoogle Scholar
  14. Miller, Z., Pritikin, D.: On the separation number of a graph. Networks 19, 651–666 (1989)MathSciNetMATHCrossRefGoogle Scholar
  15. Pantrigo, J.J., Martí, R., Duarte, A., Pardo, E.G.: Scatter search for the cutwidth minimization problem. Ann. Oper. Res. 199(1), 285–304 (2012)Google Scholar
  16. Piñana, E., Plana, I., Campos, V., Martí, R.: GRASP and path relinking for the matrix bandwidth minimization. Eur. J. Oper. Res. 153, 200–210 (2004)MATHCrossRefGoogle Scholar
  17. Raspaud, A., Schröder, H., Sykora, O., Török, L., Vrt’o, I.: Antibandwidth and cyclic antibandwidth of meshes and hypercubes. Discret. Math. 309, 3541–3552 (2009)MATHCrossRefGoogle Scholar
  18. Rego, C.: Node ejection chains for the vehicle routing problem: sequential and parallel algorithms. Parallel Comput. 27(3), 201–222 (2001)MATHCrossRefGoogle Scholar
  19. Resende, M., Martí, R., Gallego, M., Duarte, A.: GRASP and path relinking for the max-min diversity problem. Comput. Oper. Res. 37, 498–508 (2010)MathSciNetMATHCrossRefGoogle Scholar
  20. Rodriguez-Tello, E., Jin-Kao, H., Torres-Jimenez, J.: An effective two-stage simulated annealing algorithm for the minimum linear arrangement problem. Comput. Oper. Res. 35(10), 3331–3346 (2008)MATHCrossRefGoogle Scholar
  21. Török, L., Vrt’o, I.: Antibandwidth of 3-dimensional meshes. Electron. Notes Discret. Math. 28, 161–167 (2007)CrossRefGoogle Scholar
  22. Yixun, L., Jinjiang, Y.: The dual bandwidth problem for graphs. J. Zhengzhou Univ. 35, 1–5 (2003)MATHGoogle Scholar
  23. Wang, X., Wu, X., Dumitrescu, S.: On explicit formulas for bandwidth and antibandwidth of hypercubes. Discret. Appl. Math. 157(8), 1947–1952 (2009)MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • Manuel Lozano
    • 1
  • Abraham Duarte
    • 2
  • Francisco Gortázar
    • 2
  • Rafael Martí
    • 3
  1. 1.Departamento de Ciencias de la Computación e Inteligencia ArtificialUniversidad de GranadaGranadaSpain
  2. 2.Departamento de Ciencias de la ComputaciónUniversidad Rey Juan CarlosMadridSpain
  3. 3.Departamento de Estadística e Investigación OperativaUniversidad de ValenciaValenciaSpain

Personalised recommendations