Journal of Heuristics

, Volume 18, Issue 6, pp 849–867 | Cite as

A hybrid heuristic approach for the multi-commodity one-to-one pickup-and-delivery traveling salesman problem

  • Inmaculada Rodríguez-Martín
  • Juan José Salazar-González
Article

Abstract

This paper addresses an extension of the Traveling Salesman Problem where a vehicle with a limited capacity must transport commodities. Each commodity has a weight, and exactly one origin and one destination. The objective is to find a minimum length Hamiltonian tour satisfying all the transportation requests without ever violating the capacity constraint. We propose for this problem a hybrid heuristic approach that combines the GRASP and VND metaheuristic techniques. Two variants of the method are presented, one of them using a mathematical programming based local search. We conduct computational experiments to compare the developed algorithms. The experiments show that they improve the best known solutions for a set of instances from the literature, and are able to cope with instances with up to 300 customers and 600 commodities in a reasonable amount of computation time.

Keywords

Pickup and delivery Traveling salesman problem Hybrid heuristics 

References

  1. Ascheuer, N.: Hamiltonian path problems in the on-line optimization of flexible manufacturing systems. Ph.D. Thesis, Technische Universität, Berlin, Germany (1995) Google Scholar
  2. Ascheuer, N., Escudero, L.F., Grötschel, M., Stoer, M.: A cutting plane approach to the sequential ordering problem (with applications to job scheduling in manufacturing). SIAM J. Optim. 3, 25–42 (1993) MathSciNetMATHCrossRefGoogle Scholar
  3. Ascheuer, N., Jünger, M., Reinelt, G.: A branch & cut algorithm for the asymmetric traveling salesman problem with precedence constraints. Comput. Optim. Appl. 17, 61–84 (2000) MathSciNetMATHCrossRefGoogle Scholar
  4. Anily, S., Hassin, R.: The swapping problem. Networks 22, 419–433 (1992) MathSciNetMATHCrossRefGoogle Scholar
  5. Berbeglia, G., Cordeau, J.-F., Gribkovskaia, I., Laporte, G.: Static pickup and delivery problems: a classification scheme and survey. Top 15, 1–31 (2007) MathSciNetMATHCrossRefGoogle Scholar
  6. Danna, E., Rothberg, E., Le Pape, C.: Exploring relaxation induced neighborhoods to improve MIP solutions. Math. Program., Ser. A 102, 71–90 (2005) MathSciNetMATHCrossRefGoogle Scholar
  7. Dumitrescu, I., Ropke, S., Cordeau, J.-F., Laporte, G.: The traveling salesman problem with pickup and delivery: polyhedral results and a branch-and-cut algorithm. Math. Program. 121, 269–305 (2010) MathSciNetMATHCrossRefGoogle Scholar
  8. Erdoǧan, G., Cordeau, J.-F., Laporte, G.: A branch-and-cut algorithm for solving the non-preemptive capacitated swapping problem. Discrete Appl. Math. 158, 1599–1614 (2010) MathSciNetCrossRefGoogle Scholar
  9. Fischetti, M., Lodi, A.: Local branching. Math. Program., Ser. B 98, 23–47 (2003) MathSciNetMATHCrossRefGoogle Scholar
  10. Fiala Timlin, M.T., Pulleyblank, W.R.: Precedence constrained routing and helicopter scheduling: heuristic design. Interfaces 22, 100–111 (1992) CrossRefGoogle Scholar
  11. Feo, T.A., Resende, M.G.C.: Greedy randomized adaptative search procedures. J. Glob. Optim. 6, 109–133 (1995) MathSciNetMATHCrossRefGoogle Scholar
  12. Frederickson, G.N., Hecht, M.S., Kim, C.E.: Approximation algorithms for some routing problems. SIAM J. Comput. 7, 178–193 (1978) MathSciNetCrossRefGoogle Scholar
  13. Gambardella, L.M., Dorigo, M.: An ant colony system hybridized with a new local search for the sequential ordering problem. INFORMS J. Comput. 13, 237–255 (2000) MathSciNetCrossRefGoogle Scholar
  14. Gendreau, M., Hertz, A., Laporte, G.: The traveling salesman problem with backhauls. Comput. Oper. Res. 23, 501–508 (1996) MathSciNetMATHCrossRefGoogle Scholar
  15. Gouveia, L., Pesneau, P.: On extended formulations for the precedence constrained asymmetric traveling salesman problem. Networks 48, 77–89 (2006) MathSciNetMATHCrossRefGoogle Scholar
  16. Hernández-Pérez, H., Rodríguez-Martín, I., Salazar-González, J.J.: A hybrid GRASP/VND heuristic for the one-commodity pickup-and-delivery traveling salesman problem. Comput. Oper. Res. 36, 1639–1645 (2009) MATHCrossRefGoogle Scholar
  17. Hernández-Pérez, H., Salazar-González, J.J.: A branch-and-cut algorithm for a traveling salesman problem with pickup and delivery. Discrete Appl. Math. 145, 126–139 (2004a) MathSciNetMATHCrossRefGoogle Scholar
  18. Hernández-Pérez, H., Salazar-González, J.J.: Heuristics for the one-commodity pickup-and-delivery traveling salesman problem. Transp. Sci. 38, 245–255 (2004b) CrossRefGoogle Scholar
  19. Hernández-Pérez, H., Salazar-González, J.J.: The multi-commodity one-to-one pickup-and-delivery traveling salesman problem. Eur. J. Oper. Res. 196, 987–995 (2009) MATHCrossRefGoogle Scholar
  20. Kalantari, B., Hill, A.V., Arora, S.R.: An algorithm for the traveling salesman problem with pickup and delivery customers. Eur. J. Oper. Res. 22, 377–386 (1985) MathSciNetMATHCrossRefGoogle Scholar
  21. Kerivin, H.L., Lacroix, M., Mahjoub, A.R.: Models for the single-vehicle preemptive pickup and delivery problem. J. Comb. Optim. 23, 196–223 (2012) MathSciNetMATHCrossRefGoogle Scholar
  22. Lin, S., Kernighan, B.W.: An effective heuristic algorithm for the traveling salesman problem. Oper. Res. 21, 498–516 (1973) MathSciNetMATHCrossRefGoogle Scholar
  23. Maniezzo, V., Stützle, T., Voß, S. (eds.): Matheuristics. Hybridizing Metaheuristics and Mathematical Programming. Annals of Information Systems. Springer, Berlin (2009) Google Scholar
  24. Mladenović, N., Hansen, P.: Variable neighborhood search. Comput. Oper. Res. 24, 1097–1100 (1997) MathSciNetMATHCrossRefGoogle Scholar
  25. Parragh, S.N., Doerner, K.F., Hartl, R.F.: A survey on pickup and delivery problems. Part I. Transportation between customers and depot. J. Betriebswirtsch. 58, 21–51 (2008a) CrossRefGoogle Scholar
  26. Parragh, S.N., Doerner, K.F., Hartl, R.F.: A survey on pickup and delivery problems. Part II. Transportation between pickup and delivery locations. J. Betriebswirtsch. 58, 81–117 (2008b) CrossRefGoogle Scholar
  27. Renaud, J., Boctor, F.F., Ouenniche, I.: A heuristic for the pickup and delivery traveling salesman problem. Comput. Oper. Res. 27, 905916 (2000) MathSciNetCrossRefGoogle Scholar
  28. Savelsbergh, M.W.P., Sol, M.: The general pickup and delivery problem. Transp. Sci. 29, 17–29 (1995) MATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Inmaculada Rodríguez-Martín
    • 1
  • Juan José Salazar-González
    • 1
  1. 1.DEIOC, Facultad de MatemáticasUniversidad de La LagunaLa LagunaSpain

Personalised recommendations