Journal of Heuristics

, Volume 19, Issue 4, pp 565–571 | Cite as

Solving large scale Max Cut problems via tabu search

  • Gary A. Kochenberger
  • Jin-Kao Hao
  • Zhipeng Lü
  • Haibo Wang
  • Fred Glover
Article

Abstract

In recent years many algorithms have been proposed in the literature for solving the Max-Cut problem. In this paper we report on the application of a new Tabu Search algorithm to large scale Max-cut test problems. Our method provides best known solutions for many well-known test problems of size up to 10,000 variables, although it is designed for the general unconstrained quadratic binary program (UBQP), and is not specialized in any way for the Max-Cut problem.

Keywords

Max Cut problem Metaheuristics Combinatorial optimization 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Boros, E., Hammer, P.: The Max-Cut problem and quadratic 0-1 optimization; polyhedral aspects, relaxations and bounds. Ann. Oper. Res. 33, 151–180 (1991) MathSciNetMATHCrossRefGoogle Scholar
  2. Burer, S., Monteiro, D., Zang, Y.: Rank-two relaxation heuristic for Max-Cut and other binary quadratic programs. SIAM J. Optim. 12, 503–521 (2001) MathSciNetMATHCrossRefGoogle Scholar
  3. Choi, C., Ye, Y.: Solving sparse semidefinite programs using the dual scaling algorithm with an iterative solver. Working Paper, Department of Management Sciences, The University of Iowa (2000) Google Scholar
  4. Festa, P., Pardalos, P., Resende, M., Ribeiro, C.: Randomized heuristics for the Max-Cut problem. Optim. Methods Softw. 7, 1033–1058 (2002) MathSciNetCrossRefGoogle Scholar
  5. Glover, F., Lü, Z., Hao, J.K.: Diversification-driven tabu search for unconstrained binary quadratic problems. 4OR, Q. J. Oper. Res. (2010). doi:10.1007/s10288-009-0115-y Google Scholar
  6. Goemans, M., Williamson, D.: Improved approximation algorithms for Max-Cut and satisfiability problems using Semidefinite programming. J. ACM 42, 1115–1145 (1995) MathSciNetMATHCrossRefGoogle Scholar
  7. Helmberg, C., Rendl, F.: Solving quadratic (0-1) problems by semidefinite programs and cutting planes. Working Paper, Technische Universitat Graz (1996) Google Scholar
  8. Karish, S., Rendl, F., Clausen, J.: Solving graph bisection problems with semidefinite programming. SIAM J. Comput. 12, 177–191 (2000) Google Scholar
  9. Krishnan, K., Mitchell, J.: A semidefinite programming based polyhedral cut and price approach for the Max-Cut problem. Comput. Optim. Appl. 33, 51–71 (2006) MathSciNetMATHCrossRefGoogle Scholar
  10. Marti, R., Duarte, A., Laguna, M.: Advanced scatter search for the Max-Cut problem. INFORMS J. Comput. 21, 26–38 (2009) MathSciNetMATHCrossRefGoogle Scholar
  11. Rendl, F., Rinaldi, G., Wiegele, A.: Solving Max-Cut to optimality by intersecting semidefinite and polyhedral relaxations. Math. Program. 121, 307–335 (2008) MathSciNetCrossRefGoogle Scholar
  12. Poljak, S., Tuza, Z.: The Max-Cut problem: a survey. In: Cook, W., Lovasz, L., Seymour, P. (eds.) Special Year on Combinatorial Optimization. DIMACS Series in Discrete Mathematics and Computer Science. Am. Math. Soc., Providence (1995) Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Gary A. Kochenberger
    • 1
  • Jin-Kao Hao
    • 2
  • Zhipeng Lü
    • 2
  • Haibo Wang
    • 3
  • Fred Glover
    • 4
  1. 1.University of ColoradoDenverUSA
  2. 2.LERIAUniversite d’AngersAngers Cedex 01France
  3. 3.Texas A&M International UniversityLaredoUSA
  4. 4.OptTek SystemsBoulderUSA

Personalised recommendations