Journal of Heuristics

, Volume 19, Issue 2, pp 201–232 | Cite as

An Iterated Local Search heuristic for the Heterogeneous Fleet Vehicle Routing Problem

  • Puca Huachi Vaz Penna
  • Anand Subramanian
  • Luiz Satoru Ochi
Article

Abstract

This paper deals with the Heterogeneous Fleet Vehicle Routing Problem (HFVRP). The HFVRP is \(\mathcal{NP}\)-hard since it is a generalization of the classical Vehicle Routing Problem (VRP), in which clients are served by a heterogeneous fleet of vehicles with distinct capacities and costs. The objective is to design a set of routes in such a way that the sum of the costs is minimized. The proposed algorithm is based on the Iterated Local Search (ILS) metaheuristic which uses a Variable Neighborhood Descent procedure, with a random neighborhood ordering (RVND), in the local search phase. To the best of our knowledge, this is the first ILS approach for the HFVRP. The developed heuristic was tested on well-known benchmark instances involving 20, 50, 75 and 100 customers. These test-problems also include dependent and/or fixed costs according to the vehicle type. The results obtained are quite competitive when compared to other algorithms found in the literature.

Keywords

Heterogeneous Fleet Vehicle Routing Problem Fleet size and mix Metaheuristic Iterated Local Search 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baldacci, R., Mingozzi, A.: A unified exact method for solving different classes of vehicle routing problems. Math. Program. 120, 347–380 (2009) MathSciNetMATHCrossRefGoogle Scholar
  2. Baldacci, R., Battarra, M., Vigo, D.: Routing a heterogeneous fleet of vehicles. In: The Vehicle Routing Problem: Latest Advances and New Challenges, pp. 11–35. Springer, Berlin (2008) Google Scholar
  3. Bianchi, L., Birattari, M., Chiarandini, M., Manfrin, M., Mastrolilli, M., Paquete, L., Rossi-Doria, O., Schiavinotto, T.: Hybrid metaheuristics for the vehicle routing problem with stochastic demands. J. Math. Model. Algorithms 5(1), 91–110 (2006) MathSciNetMATHCrossRefGoogle Scholar
  4. Brandão, J.: A deterministic tabu search algorithm for the fleet size and mix vehicle routing problem. Eur. J. Oper. Res. 195, 716–728 (2009) MATHCrossRefGoogle Scholar
  5. Chen, P., Huang, H.K., Dong, X.Y.: Iterated variable neighborhood descent algorithm for the capacitated vehicle routing problem. Expert Syst. Appl. 37(2), 1620–1627 (2010) CrossRefGoogle Scholar
  6. Cheung, R., Hang, D.: Multi-attribute label matching algorithms for vehicle routing problems with time windows and backhauls. IIE Trans. 35, 191–205 (2003) CrossRefGoogle Scholar
  7. Choi, E., Tcha, D.W.: A column generation approach to the heterogeneous fleet vehicle routing problem. Comput. Oper. Res. 34, 2080–2095 (2007) MATHCrossRefGoogle Scholar
  8. Clarke, G., Wright, J.W.: Scheduling of vehicles from a central depot to a number of delivery points. Oper. Res. 12, 568–581 (1964) CrossRefGoogle Scholar
  9. Cordeau, J.F., Gendreau, M., Laporte, G., Potvin, J.Y., Semet, F.: A guide to vehicle routing problem. J. Oper. Res. Soc. 53, 512–522 (2002) MATHCrossRefGoogle Scholar
  10. Dongarra, J.J.: Performance of various computers using standard linear equations software. Tech. Rep. CS-89-85. Computer Science Department, University of Tennessee (2010) Google Scholar
  11. Gendreau, M., Laporte, G., Musaraganyi, C., Taillard, E.D.: A tabu search heuristic for the heterogeneous fleet vehicle routing problem. Comput. Oper. Res. 26, 1153–1173 (1999) MATHCrossRefGoogle Scholar
  12. Glover, F.: Future paths in integer programming and links to Artificial Intelligence. Comput. Oper. Res. 13(5), 533–549 (1986) MathSciNetMATHCrossRefGoogle Scholar
  13. Glover, F., Laguna, M., Marti, R.: Scatter search and path relinking: advances and appl. In: Handbook of Metaheuristics, pp. 1–36. Kluwer Academic, Dordrecht (2003) Google Scholar
  14. Golden, B.L., Assad, A.A., Levy, L., Gheysens, F.G.: The feet size and mix vehicle routing problem. Comput. Oper. Res. 11, 49–66 (1984) MATHCrossRefGoogle Scholar
  15. Hoff, A., Andersson, H., Christiansen, M., Hasle, G., Løkketangen, A.: Industrial aspects and literature survey: Fleet composition and routing. Comput. Oper. Res. 37, 1515–1536 (2010) MathSciNetMATHCrossRefGoogle Scholar
  16. Holland, J.H.: Adaptation in Natural and Artificial Systems. University of Michigan Press, Ann Arbor (1975) Google Scholar
  17. Ibaraki, T., Imahori, S., Nonobe, K., Sobue, K., Uno, T., Yagiura, M.: An iterated local search algorithm for the vehicle routing problem with convex time penalty functions. Discrete Appl. Math. 156(11), 2050–2069 (2008) MathSciNetMATHCrossRefGoogle Scholar
  18. Imran, A., Salhi, S., Wassan, N.A.: A variable neighborhood-based heuristic for the heterogeneous fleet vehicle routing problem. Eur. J. Oper. Res. 197, 509–518 (2009) MATHCrossRefGoogle Scholar
  19. Lee, Y., Kim, J., Kang, K., Kim, K.: A heuristic for vehicle fleet mix problem using tabu search and set partitioning. J. Oper. Res. Soc.. 59, 833–841 (2008) MATHCrossRefGoogle Scholar
  20. Li, F., Golden, B., Wasil, E.: A record-to-record travel algorithm for solving the heterogeneous fleet vehicle routing problem. Comput. Oper. Res. 34, 2734–2742 (2007) MATHCrossRefGoogle Scholar
  21. Lima, C.M.R.R., Goldbarg, M.C., Goldbarg, E.F.G.: A memetic algorithm for the heterogeneous fleet vehicle routing problem. Electron. Notes Discrete Math. 18, 171–176 (2004) MathSciNetCrossRefGoogle Scholar
  22. Liu, S., Huang, W., Ma, H.: An effective genetic algorithm for the fleet size and mix vehicle routing problems. Transp. Res., Part B, Methodol. 45, 434–445 (2009) CrossRefGoogle Scholar
  23. Lourenço, H.R., Martin, O.C., Stützle, T.: Iterated local search. In: Handbook of Metaheuristics, pp. 321–353. Kluwer Academic, Dordrecht (2003) Google Scholar
  24. Mladenovic, N., Hansen, P.: Variable neighborhood search. Comput. Oper. Res. 24, 1097–1100 (1997) MathSciNetMATHCrossRefGoogle Scholar
  25. Moscato, P., Cotta, C.: A gentle introduction to memetic algorithm. In: Handbook of Metaheuristics, pp. 105–144. Kluwer Academic, Dordrecht (2003) Google Scholar
  26. Ochi, L., Vianna, D., Drummond, L.M.A., Victor, A.: An evolutionary hybrid metaheuristic for solving the vehicle routing problem with heterogeneous fleet. Lect. Notes Comput. Sci. 1391, 187–195 (1998a) CrossRefGoogle Scholar
  27. Ochi, L., Vianna, D., Drummond, L.M.A., Victor, A.: A parallel evolutionary algorithm for the vehicle routing problem with heterogeneous fleet. Future Gener. Comput. Syst. 14, 285–292 (1998b) CrossRefGoogle Scholar
  28. Or, I.: Traveling salesman-type combinational problems and their relation to the logistics of blood banking. PhD thesis, Northwestern University, USA (1976) Google Scholar
  29. Osman, I.H.: Metastrategy simulated annealing and tabu search algorithms for the vehicle routing problem. Ann. Oper. Res. 41(1–4), 421–451 (1993) MATHCrossRefGoogle Scholar
  30. Pessoa, A., Uchoa, E., de Aragão, M.P.: Robust branch-and-cut-and-price algorithms for vehicle routing problems. In: The Vehicle Routing Problem: Latest Advances and New Challenges, pp. 297–325. Springer, Berlin (2008) CrossRefGoogle Scholar
  31. Pessoa, A., Uchoa, E., de Aragão, M.P.: A robust branch-cut-and-price algorithm for the heterogeneous fleet vehicle routing problem. Network 54(4), 167–177 (2009) MATHCrossRefGoogle Scholar
  32. Prins, C.: Efficient heuristics for the heterogeneous fleet multitrip vrp with application to a large-scale real case. J. Math. Model. Algorithms 1, 135–150 (2002) MathSciNetMATHCrossRefGoogle Scholar
  33. Prins, C.: A GRASP × evolutionary local search hybrid for the Vehicle Routing Problem. In: Bio-inspired Algorithms for the Vehicle Routing Problem, Studies in Computational Intelligence, vol. 161, pp. 35–53. Springer, Berlin (2009a) CrossRefGoogle Scholar
  34. Prins, C.: Two memetic algorithms for heterogeneous fleet vehicle routing problems. Eng. Appl. Artif. Intell. 22(6), 916–928 (2009b) CrossRefGoogle Scholar
  35. Renaud, J., Boctor, F.: A sweep-based algorithm for the fleet size and mix vehicle routing problem. Eur. J. Oper. Res. 140, 618–628 (2002) MathSciNetMATHCrossRefGoogle Scholar
  36. Subramanian, A., Drummond, L., Bentes, C., Ochi, L., Farias, R.: A parallel heuristic for the vehicle routing problem with simultaneous pickup and delivery. Comput. Oper. Res. 37(11), 1899–1911 (2010) MATHCrossRefGoogle Scholar
  37. Taillard, E.D.: A heuristic column generation method for heterogeneous fleet. RAIRO. Rech. Opér. 33, 1–14 (1999) MathSciNetMATHCrossRefGoogle Scholar
  38. Taillard, E., Badeau, P., Gendreau, M., Guertin, F., Jy, P.: A tabu search heuristic for the vehicle routing problem with soft time windows. Transp. Sci. 31, 170–186 (1997) MATHCrossRefGoogle Scholar
  39. Tarantilis, C.D., Kiranoudis, C.T.: A meta-heuristic algorithm for the efficient distribution of perishable foods. J. Food Eng. 50, 1–9 (2001) CrossRefGoogle Scholar
  40. Tarantilis, C.D., Kiranoudis, C.T.: A flexible adaptive memory-based algorithm for real-life transportation operations: Two case studies from dairy and construction sector. Eur. J. Oper. Res. 179, 806–822 (2007) MATHCrossRefGoogle Scholar
  41. Tarantilis, C.D., Kiranoudis, C.T., Vassiliadis, V.S.: A list based threshold accepting metaheuristic for the heterogeneous fixed fleet vehicle routing problem. J. Oper. Res. Soc. 54, 65–71 (2003) MATHCrossRefGoogle Scholar
  42. Tarantilis, C.D., Kiranoudis, C.T., Vassiliadis, V.S.: A threshold accepting metaheuristic for the heterogeneous fixed fleet vehicle routing problem. Eur. J. Oper. Res. 152, 148–158 (2004) MathSciNetMATHCrossRefGoogle Scholar
  43. Yaman, H.: Formulations and valid inequalities for the heterogeneous vehicle routing problem. Math. Program. 106, 365–390 (2006) MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Puca Huachi Vaz Penna
    • 1
    • 3
  • Anand Subramanian
    • 2
    • 3
  • Luiz Satoru Ochi
    • 3
  1. 1.Instituto do Noroeste Fluminense de Educação SuperiorUniversidade Federal FluminenseSanto Antônio de PáduaBrazil
  2. 2.Departamento de Engenharia de Produção, Centro de TecnologiaUniversidade Federal da ParaíbaJoão PessoaBrazil
  3. 3.Instituto de ComputaçãoUniversidade Federal FluminenseNiteróiBrazil

Personalised recommendations