Journal of Heuristics

, Volume 19, Issue 2, pp 399–422 | Cite as

GRASP algorithms for the robust railway network design problem

  • Bosco García-Archilla
  • Antonio J. Lozano
  • Juan A. Mesa
  • Federico Perea
Article

Abstract

This paper analyzes the solvability of a railway network design problem and its robust version. These problems are modeled as integer linear programming problems with binary variables, and their solutions provide topological railway networks maximizing the trip coverage in the presence of a competing mode, both assuming that the network works fine and that links can fail, respectively. Since these problems are computationally intractable for realistic sizes, GRASP heuristics are proposed for finding good feasible solutions. The results obtained in a computational experience indicate that our GRASP algorithms are suitable for railway network design problems.

Keywords

Transportation Robustness Heuristics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baaj, M., Mahmassani, H.: An AI-based approach for transit route system planning and design. J. Adv. Transp. 25(2), 187–210 (1991) CrossRefGoogle Scholar
  2. Cancela, H., Robledo, F., Rubino, G.: A grasp algorithm with tree based local search for designing a survivable wide area network backbone. J. Comput. Sci. Technol. 4(1), 52–58 (2004) Google Scholar
  3. Díaz, J.A., Luna, D., Luna, R.: A grasp heuristic for the manufacturing cell formation problem. TOP (2011). doi: 10.1007/s11750-010-0159-3 Google Scholar
  4. Feo, T., Resende, M.: A probabilistic heuristic for a computationally difficult set covering problem. Oper. Res. Lett. 8, 67–71 (1989) MathSciNetMATHCrossRefGoogle Scholar
  5. Goossens, J., van Hoesel, C., Kroon, L.: A branch-and-cut approach for solving railway line-planning problems. Transp. Sci. 38, 379–393 (2004) CrossRefGoogle Scholar
  6. Institute of Electrical and Electronics Engineers: IEEE Standard Computer Dictionary: A Compilation of IEEE Standard Computer Glossaries (1990) Google Scholar
  7. Laporte, G., Mesa, J., Perea, F.: A game theoretic framework for the robust railway transit network design problem. Transp. Res., Part B, Methodol. 44, 447–459 (2010) CrossRefGoogle Scholar
  8. Laporte, G., Marín, A., Mesa, J., Perea, F.: Designing robust rapid transit networks with alternative routes. J. Adv. Transp. 45, 54–65 (2011) CrossRefGoogle Scholar
  9. Marín, A., García-Ródenas, R.: Location of infrastructure in urban railway networks. Comput. Oper. Res. 36, 1461–1477 (2009) MATHCrossRefGoogle Scholar
  10. Marín, A., Jaramillo, P.: Urban rapid transit network design: accelerated Benders decomposition. Ann. Oper. Res. 169(1), 35–53 (2009) MathSciNetMATHCrossRefGoogle Scholar
  11. Marín, A., Mesa, J.A., Perea, F.: Integrating robust railway network design and line planning under failures. Lect. Notes Comput. Sci. 5868, 273–292 (2009) CrossRefGoogle Scholar
  12. Mauttone, A., Urquhart, M.E.: A route set construction algorithm for the transit network design problem. Comput. Oper. Res. 36, 2440–2449 (2009) MATHCrossRefGoogle Scholar
  13. Murphey, R., Pardalos, P., Pitsoulis, L.: A GRASP for the multitarget multisensor tracking problem. In: Networks. Discrete Mathematics and Theoretical Computer Science Series, vol. 40, pp. 277–302. American Mathematical Society, Providence (1998) Google Scholar
  14. Nesmachnow, S., Cancela, H., Alba, E.: Evolutionary algorithms applied to reliable communication network design. Eng. Optim. 39(7), 831–855 (2007) MathSciNetCrossRefGoogle Scholar
  15. Schöbel, A., Scholl, S.: Line planning with minimal transfers. In: 5th Workshop on Algorithmic Methods and Models for Optimization of Railways, Number 06901 in Dagstuhl Seminar Proceedings (2006) Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Bosco García-Archilla
    • 1
  • Antonio J. Lozano
    • 2
  • Juan A. Mesa
    • 1
  • Federico Perea
    • 3
  1. 1.Department of Applied Mathematics II, Engineering Higher Technical SchoolUniversidad de SevillaSevilleSpain
  2. 2.Department of Mathematics, Faculty of Experimental SciencesUniversidad de HuelvaHuelvaSpain
  3. 3.Department of Statistics and Operations ResearchUniversitat Politècnica de ValènciaValenciaSpain

Personalised recommendations