Advertisement

Journal of Heuristics

, Volume 18, Issue 2, pp 317–352 | Cite as

On dominance-based multiobjective local search: design, implementation and experimental analysis on scheduling and traveling salesman problems

  • Arnaud Liefooghe
  • Jérémie Humeau
  • Salma Mesmoudi
  • Laetitia Jourdan
  • El-Ghazali Talbi
Article

Abstract

This paper discusses simple local search approaches for approximating the efficient set of multiobjective combinatorial optimization problems. We focus on algorithms defined by a neighborhood structure and a dominance relation that iteratively improve an archive of nondominated solutions. Such methods are referred to as dominance-based multiobjective local search. We first provide a concise overview of existing algorithms, and we propose a model trying to unify them through a fine-grained decomposition. The main problem-independent search components of dominance relation, solution selection, neighborhood exploration and archiving are largely discussed. Then, a number of state-of-the-art and original strategies are experimented on solving a permutation flowshop scheduling problem and a traveling salesman problem, both on a two- and a three-objective formulation. Experimental results and a statistical comparison are reported in the paper, and some directions for future research are highlighted.

Keywords

Multiobjective optimization Local search Flowshop scheduling problem Traveling salesman problem 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aguirre, H., Tanaka, K.: Random bit climbers on multiobjective MNK-landscapes: effects of memory and population climbing. IEICE Trans. Fundam. 88-A(1), 334–345 (2005) CrossRefGoogle Scholar
  2. Angel, E., Bampis, E., Gourvés, L.: A dynasearch neighborhood for the bicriteria traveling salesman problem. In: Metaheuristics for Multiobjective Optimisation. Lecture Notes in Economics and Mathematical Systems, vol. 535, pp. 153–176. Springer, Berlin (2004), Chap. 6 CrossRefGoogle Scholar
  3. Basseur, M., Seynhaeve, F., Talbi, E.G.: Design of multi-objective evolutionary algorithms: Application to the flow shop scheduling problem. In: IEEE Congress on Evolutionary Computation, CEC 2002, pp. 1151–1156. IEEE Press, Piscataway (2002) Google Scholar
  4. Bleuler, S., Laumanns, M., Thiele, L., Zitzler, E.: PISA—a platform and programming language independent interface for search algorithms. In: Second International Conference on Evolutionary Multi-Criterion Optimization, EMO 2003, Lecture Notes in Computer Science, vol. 2632, pp. 494–508. Springer, Faro (2003) CrossRefGoogle Scholar
  5. Brockhoff, D., Friedrich, T., Hebbinghaus, N., Klein, C., Neumann, F., Zitzler, E.: Do additional objectives make a problem harder? In: Genetic and Evolutionary Computation Conference, GECCO 2007, pp. 765–772. ACM Press, New York (2007) Google Scholar
  6. Coello Coello, C.A., Lamont, G.B., Van Veldhuizen, D.A.: Evolutionary Algorithms for Solving Multi-Objective Problems, 2nd edn. Genetic and Evolutionary Computation Series. Springer, New York (2007) zbMATHGoogle Scholar
  7. Davis, L.: Job shop scheduling with genetic algorithms. In: First International Conference on Genetic Algorithms, ICGA 1985, pp. 136–140. L. Erlbaum, Hillsdale (1985) Google Scholar
  8. Deb, K.: Multi-Objective Optimization using Evolutionary Algorithms. Wiley, Chichester (2001) zbMATHGoogle Scholar
  9. Deb, K., Agrawal, S., Pratap, A., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002) CrossRefGoogle Scholar
  10. Dubois-Lacoste, J., López-Ibáñez, M., Stützle, T.: Effective hybrid stochastic local search algorithms for biobjective permutation flowshop scheduling. In: International Workshop on Hybrid Metaheuristics, HM 2009, Lecture Notes in Computer Science, vol. 5818, pp. 100–114. Springer, Berlin (2009) CrossRefGoogle Scholar
  11. Ehrgott, M., Gandibleux, X.: Approximative solution methods for multiobjective combinatorial optimization. Top 12(1), 1–89 (2004) MathSciNetzbMATHCrossRefGoogle Scholar
  12. Ehrgott, M., Gandibleux, X.: Hybrid metaheuristics for multi-objective combinatorial optimization. In: Hybrid Metaheuristics: An Emerging Approach to Optimization. Studies in Computational Intelligence, vol. 114, pp. 221–259. Springer, Berlin (2008), Chap. 8 Google Scholar
  13. Ehrgott, M., Klamroth, K.: Connectedness of efficient solutions in multiple criteria combinatorial optimization. Eur. J. Oper. Res. 97(1), 159–166 (1997) MathSciNetzbMATHCrossRefGoogle Scholar
  14. Gandibleux, X., Mezdaoui, N., Fréville, A.: A tabu search procedure to solve multiobjective combinatorial optimization problems. In: Advances in Multiple Objective and Goal Programming. Lecture Notes in Economics and Mathematical Systems, vol. 455, pp. 291–300. Springer, Berlin (1997) Google Scholar
  15. Geiger, M.: On operators and search space topology in multi-objective flow shop scheduling. Eur. J. Oper. Res. 181(1), 195–206 (2007) MathSciNetzbMATHCrossRefGoogle Scholar
  16. Graham, R.L., Lawler, E.L., Lenstra, J.K., Rinnooy Kan, A.H.G.: Optimization and approximation in deterministic sequencing and scheduling: a survey. Ann. Discrete Math. 5, 287–326 (1979) MathSciNetzbMATHCrossRefGoogle Scholar
  17. Hansen, M.P.: Tabu search for multiobjective optimisation: MOTS. In: Thirteenth International Conference on Multiple Criteria Decision Making, MCDM 1997, Springer, Cape Town (1997) Google Scholar
  18. Ishibuchi, H., Murata, T.: A multi-objective genetic local search algorithm and its application to flowshop scheduling. IEEE Trans. Syst. Man Cybern. 28, 392–403 (1998) CrossRefGoogle Scholar
  19. Jaszkiewicz, A.: Genetic local search for multi-objective combinatorial optimization. Eur. J. Oper. Res. 137(1), 50–71 (2002) MathSciNetzbMATHCrossRefGoogle Scholar
  20. Knowles, J., Corne, D.: Bounded Pareto archiving: theory and practice. In: Metaheuristics for Multiobjective Optimisation. Lecture Notes in Economics and Mathematical Systems, vol. 535, pp. 39–64. Springer, Berlin (2004), Chap. 2 CrossRefGoogle Scholar
  21. Knowles, J., Thiele, L., Zitzler, E.: A tutorial on the performance assessment of stochastic multiobjective optimizers. TIK Report 214, Computer Engineering and Networks Laboratory (TIK), ETH Zurich, Zurich, Switzerland (revised version) (2006) Google Scholar
  22. Knowles, J.D., Corne, D.: Approximating the nondominated front using the Pareto archived evolution strategy. Evol. Comput. 8(2), 149–172 (2000) CrossRefGoogle Scholar
  23. Landa, Silva J.D., Burke, E., Petrovic, S.: An introduction to multiobjective metaheuristics for scheduling and timetabling. In: Metaheuristics for Multiobjective Optimisation. Lecture Notes in Economics and Mathematical Systems, vol. 535, pp. 91–129. Springer, Berlin (2004) CrossRefGoogle Scholar
  24. Laumanns, M., Thiele, L., Deb, K., Zitzler, E.: Combining convergence and diversity in evolutionary multi-objective optimization. Evol. Comput. 10(3), 263–282 (2002) CrossRefGoogle Scholar
  25. Laumanns, M., Thiele, L., Zitzler, E.: Running time analysis of evolutionary algorithms on a simplified multiobjective knapsack problem. Nat. Comput. 3(1), 37–51 (2004) MathSciNetzbMATHCrossRefGoogle Scholar
  26. Liefooghe, A., Basseur, M., Jourdan, L., Talbi, E.G.: Combinatorial optimization of stochastic multi-objective problems: an application to the flow-shop scheduling problem. In: Fourth International Conference on Evolutionary Multi-criterion Optimization, EMO 2007, Lecture Notes in Computer Science, vol. 4403, pp. 457–471. Springer, Matsushima (2007) CrossRefGoogle Scholar
  27. Liefooghe, A., Jourdan, L., Legrand, T., Humeau, J., Talbi, E.G.: ParadisEO-MOEO: a software framework for evolutionary multi-objective optimization. In: Advances in Multi-Objective Nature Inspired Computing. Studies in Computational Intelligence, vol. 272, pp. 87–117. Springer, Berlin (2010), Chap. 5 CrossRefGoogle Scholar
  28. Liefooghe, A., Jourdan, L., Talbi, E.G.: A software framework based on a conceptual unified model for evolutionary multiobjective optimization: Paradis EO-MOEO. Eur. J. Oper. Res. 209(2), 104–112 (2011) MathSciNetCrossRefGoogle Scholar
  29. Lust, T., Jaszkiewicz, A.: Speed-up techniques for solving large-scale biobjective TSP. Comput. Oper. Res. 37(3), 521–533 (2010) MathSciNetzbMATHCrossRefGoogle Scholar
  30. Lust, T., Teghem, J.: Two-phase Pareto local search for the biobjective traveling salesman problem. J. Heuristics 16(3), 475–510 (2010) zbMATHCrossRefGoogle Scholar
  31. Miettinen, K.: Nonlinear Multiobjective Optimization. International Series in Operations Research and Management Science, vol. 12. Kluwer Academic, Boston (1999) zbMATHGoogle Scholar
  32. Neumann, F., Wegener, I.: Minimum spanning trees made easier via multi-objective optimization. Nat. Comput. 5(3), 305–319 (2006) MathSciNetzbMATHCrossRefGoogle Scholar
  33. Paquete, L., Stützle, T.: A two-phase local search for the biobjective traveling salesman problem. In: Second International Conference on Evolutionary Multi-Criterion Optimization, EMO 2003, Lecture Notes in Computer Science, vol. 2632, pp. 479–493. Springer, Faro (2003) CrossRefGoogle Scholar
  34. Paquete, L., Stützle, T.: A study of stochastic local search algorithms for the biobjective QAP with correlated flow matrices. Eur. J. Oper. Res. 169(3), 943–959 (2006) zbMATHCrossRefGoogle Scholar
  35. Paquete, L., Stützle, T.: Stochastic local search algorithms for multiobjective combinatorial optimization: a review. In: Gonzalez, T.F. (ed.) Handbook of Approximation Algorithms and Metaheuristics. Computer & Information Science Series, vol. 13. Chapman & Hall/CRC, New York (2007) Google Scholar
  36. Paquete, L., Stützle, T.: Design and analysis of stochastic local search for the multiobjective traveling salesman problem. Comput. Oper. Res. 36(9), 2619–2631 (2009) MathSciNetzbMATHCrossRefGoogle Scholar
  37. Paquete, L., Chiarandini, M., Stützle, T.: Pareto local optimum sets in the biobjective traveling salesman problem: an experimental study. In: Metaheuristics for Multiobjective Optimisation. Lecture Notes in Economics and Mathematical Systems, vol. 535, pp. 177–199. Springer, Berlin (2004), Chap. 7 CrossRefGoogle Scholar
  38. Paquete, L., Schiavinotto, T., Stützle, T.: On local optima in multiobjective combinatorial optimization problems. Ann. Oper. Res. 156(1), 83–97 (2007) MathSciNetzbMATHCrossRefGoogle Scholar
  39. Rudolph, G., Agapie, A.: Convergence properties of some multi-objective evolutionary algorithms. In: IEEE Congress on Evolutionary Computation, CEC 2000, pp. 1010–1016. IEEE Press, Piscataway (2000) Google Scholar
  40. Serafini, P.: Some considerations about computational complexity for multiobjective combinatorial problems. In: Recent Advances and Historical Development of Vector Optimization. Lecture Notes in Economics and Mathematical Systems, vol. 294, pp. 222–231. Springer, Berlin (1986) CrossRefGoogle Scholar
  41. Serafini, P.: Simulated annealing for multiobjective optimization problems. In: Tenth International Conference on Multiple Criteria Decision Making, MCDM 1992, Taipei, Taiwan, pp. 87–96 (1992) Google Scholar
  42. Taillard, ED: Benchmarks for basic scheduling problems. Eur. J. Oper. Res. 64, 278–285 (1993) zbMATHCrossRefGoogle Scholar
  43. Talbi, E.G.: Metaheuristics: From Design to Implementation. Wiley, New York (2009) zbMATHGoogle Scholar
  44. Talbi, E.G., Rahoual, M., Mabed, M.H., Dhaenens, C.: A hybrid evolutionary approach for multicriteria optimization problems: application to the fow shop. In: First International Conference on Evolutionary Multi-criterion Optimization, EMO 2001, Lecture Notes in Computer Science, vol. 1993, pp. 416–428. Springer, Zurich (2001) CrossRefGoogle Scholar
  45. T’Kindt, V., Billaut, J.C.: Multicriteria Scheduling: Theory, Models and Algorithms. Springer, Berlin (2002) zbMATHGoogle Scholar
  46. Ulungu, E.L., Teghem, J., Fortemps, P., Tuyttens, D.: MOSA method: a tool for solving multiobjective combinatorial optimization problems. J. Multi-Criteria Decis. Anal. 8(4), 221–236 (1999) zbMATHCrossRefGoogle Scholar
  47. Zitzler, E., Laumanns, M., Thiele, L.: SPEA2: Improving the strength Pareto evolutionary algorithm. TIK Report 103, Computer Engineering and Networks Laboratory (TIK), ETH Zurich, Zurich, Switzerland (2001) Google Scholar
  48. Zitzler, E., Thiele, L., Laumanns, M., Foneseca, C.M., Grunert da Fonseca, V.: Performance assessment of multiobjective optimizers: an analysis and review. IEEE Trans. Evol. Comput. 7(2), 117–132 (2003) CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Arnaud Liefooghe
    • 1
  • Jérémie Humeau
    • 2
  • Salma Mesmoudi
    • 3
  • Laetitia Jourdan
    • 1
  • El-Ghazali Talbi
    • 1
    • 4
  1. 1.Laboratoire d’Informatique Fondamentale de Lille (LIFL), UMR CNRS 8022Université Lille 1 INRIA Lille-Nord EuropeVilleneuve d’Ascq cedexFrance
  2. 2.Département IAÉcole des Mines de DouaiDouaiFrance
  3. 3.Laboratoire d’Imagerie Fonctionnelle (LIF)UMR_S 678 Inserm–UPMC, CHU Pitié-SalpêtrièreParis cedex 13France
  4. 4.King Saud UniversityRiyadhSaudi Arabia

Personalised recommendations