Journal of Heuristics

, Volume 18, Issue 1, pp 149–167 | Cite as

A mathematical model and a metaheuristic approach for a memory allocation problem



Memory allocation in embedded systems is one of the main challenges that electronic designers have to face. This part, rather difficult to handle is often left to the compiler with which automatic rules are applied. Nevertheless, an optimal allocation of data to memory banks may lead to great savings in terms of running time and energy consumption. This paper introduces an exact approach and a vns-based metaheuristic for addressing a memory allocation problem. Numerical experiments have been conducted on real instances from the electronic community and on dimacs instances expanded for our specific problem.


Electronic design Memory allocation MILP VNS-TS 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Atienza, D., Mamagkakis, S., Poletti, F., Mendias, J., Catthoor, F., Benini, L., Soudris, D.: Efficient system-level prototyping of power-aware dynamic memory managers for embedded systems. Integration 39(2), 113–130 (2006) Google Scholar
  2. Battiti, R.: The reactive tabu search. ORSA J. Comput. 6, 126–140 (1994) MATHGoogle Scholar
  3. Black, P.E.: Greedy algorithm. Dictionary of Algorithms and Data Structures, U.S. National Institute of Standards and Technology (2005) Google Scholar
  4. Bouygues e-lab Innovation & Optimisation. Localsolver 1.0 (2010).
  5. Carlson, R.C., Nemhauser, G.L.: Scheduling to minimize interaction cost. Oper. Res. 14(1), 52–58 (1966) MathSciNetMATHCrossRefGoogle Scholar
  6. Chiarandini, M., Paquete, A., Preuss, M., Ridge, E.: Experiments on metaheuristics: Methodological overview and open issues. Technical Report DMF-2007-03-003, The Danish Mathematical Society, Denmark (2007) Google Scholar
  7. Chimientia, A., Fanucci, L., Locatellic, R., Saponarac, S.: VLSI architecture for a low-power video codec system. Microelectron. J. 33(5), 417–427 (2002) CrossRefGoogle Scholar
  8. Conover, W.J.: Practical Nonparametric Statistic, 3rd edn. Wiley, New York (1999) Google Scholar
  9. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Greedy algorithms. In: Introduction to Algorithms, 2nd edn., pp. 370–404. MIT Press, Cambridge (1990) Google Scholar
  10. Coussy, P., Casseau, E., Bomel, P., Baganne, A., Martin, E.: A formal method for hardware IP design and integration under I/O and timing constraints. ACM Trans. Embed. Comput. Syst. 5(1), 29–53 (2006) CrossRefGoogle Scholar
  11. Diestel, R.: Graph Theory. Graduate Texts in Mathematics, vol. 173. Springer, Heidelberg (2005) MATHGoogle Scholar
  12. FICO. Xpress-MP (2009).
  13. Friedman, M.: The use of ranks to avoid the assumption of normality implicit in the analysis of variance. J. Am. Stat. Assoc. 32, 675–701 (1937) CrossRefGoogle Scholar
  14. Glover, F., Laguna, M.: Tabu Search. Kluwer Academic, Dordrecht (1997) MATHCrossRefGoogle Scholar
  15. GNU. GLPK linear programming kit (2009).
  16. Herz, A., de Werra, D.: Using tabu search techniques for graph coloring. Computing 39(4), 345–351 (1987) MathSciNetCrossRefGoogle Scholar
  17. Iverson, M., Ozguner, F., Potter, L.: Statistical prediction of task execution times through analytic benchmarking for scheduling in a heterogeneous environment. IEEE Trans. Comput. 48(12), 1374–1379 (1999) CrossRefGoogle Scholar
  18. Julien, N., Laurent, J., Senn, E., Martin, E.: Power consumption modeling and characterization of the TI C6201. IEEE MICRO 23(5), 40–49 (2003) CrossRefGoogle Scholar
  19. Kolen, A.W.J., Lenstra, J.K.: Combinatorics in operations research. In: Handbook of Combinatorics, pp. 1875–1910. Elsevier, Amsterdam (1995) Google Scholar
  20. Lee, W., Chang, M.: A study of dynamic memory management in C++ programs. Comput. Lang. Syst. Struct. 28(3), 237–272 (2002) MATHCrossRefGoogle Scholar
  21. Mladenović, N., Hansen, P.: Variable neighbourhood decomposition search. Comput. Oper. Res. 24(11), 1097–1100 (1997) MathSciNetMATHCrossRefGoogle Scholar
  22. Porumbel, D.: DIMACS graphs: Benchmark instances and best upper bound (2009).
  23. Porumbel, D., Hao, J.-K., Kuntz, P.: Diversity control and multi-parent recombination for evolutionary graph coloring algorithms. In: Proc. of the 9th EvoCOP Conference on Evolutionary Computation in Combinatorial Optimization, Tübingen, Germany, pp. 121–132 (2009) CrossRefGoogle Scholar
  24. Rego, C., Glover, F.: Local search and metaheuristics. In: Du, D.-Z., Pardalos, P.M., Gutin, G., Punnen, A. (eds.) The Traveling Salesman Problem and Its Variations. Combinatorial Optimization, vol. 12, pp. 309–368. Springer, Berlin (2004) CrossRefGoogle Scholar
  25. Soto, M., Rossi, A., Sevaux, M.: Two upper bounds on the chromatic number. In: Proc. of the CTW09 Cologne-Twente Workshop on Graphs and Combinatorial Optimization, Paris, France, vol. 8, pp. 191–194 (2009) Google Scholar
  26. Soto, M., Rossi, A., Sevaux, M.: Métaheuristiques pour l’allocation de mémoire dans les systèmes embarqués. In: Proc. ROADEF 11eme Congrès de la Société Française de Recherche Opérationelle et d’Aide à la Décision, Toulouse, France, pp. 35–43 (2010) Google Scholar
  27. Vredeveld, T., Lenstra, J.K.: On local search for the generalized graph coloring problem. Oper. Res. Lett. 31(1), 28–34 (2003) MathSciNetMATHCrossRefGoogle Scholar
  28. Wuytack, S., Catthoor, F., Nachtergaele, L., De Man, H.: Power exploration for data dominated video application. In: Proc. IEEE Symposium on Low Power Design, Monterey, CA, USA, pp. 359–364 (1996) CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Lab-STICC, CNRS, UMR 3192 Centre de RechercheUniversité de Bretagne-SudLorient CedexFrance

Personalised recommendations