Journal of Heuristics

, Volume 19, Issue 4, pp 679–695 | Cite as

Backbone guided tabu search for solving the UBQP problem

Article

Abstract

We propose a backbone-guided tabu search (BGTS) algorithm for the Unconstrained Binary Quadratic Programming (UBQP) problem that alternates between two phases: (1) a basic tabu search procedure to optimize the objective function as far as possible; (2) a strategy using the TS notion of strongly determined variables to alternately fix and free backbone components of the solutions which are estimated likely to share values in common with an optimal solution. Experimental results show that the proposed method is capable of finding the best-known solutions for 21 large random instances with 3000 to 7000 variables and boosts the performance of the basic TS in terms of both solution quality and computational efficiency.

Keywords

Backbone-guided search Tabu search UBQP Strongly determined variables Variable fixing and freeing 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alidaee, B., Kochenberger, G.A., Ahmadian, A.: 0-1 quadratic programming approach for the optimal solution of two scheduling problems. Int. J. Syst. Sci. 25, 401–408 (1994) MathSciNetMATHCrossRefGoogle Scholar
  2. Alidaee, B., Kochenberger, G.A., Lewis, K., Lewis, M., Wang, H.: A new approach for modeling and solving set packing problems. Eur. J. Oper. Res. 86(2), 504–512 (2008) MathSciNetCrossRefGoogle Scholar
  3. Amini, M., Alidaee, B., Kochenberger, G.A.: A Scatter Search Approach to Unconstrained Quadratic Binary Programs. New Methods in Optimization, pp. 317–330. McGraw–Hill, New York (1999) Google Scholar
  4. Borgulya, I.: An evolutionary algorithm for the binary quadratic problems. Adv. Soft Comput. 2, 3–16 (2005) CrossRefGoogle Scholar
  5. Boros, E., Hammer, P.L., Tavares, G.: Local search heuristics for quadratic unconstrained binary optimization (qubo). J. Heuristics 13, 99–132 (2007) CrossRefGoogle Scholar
  6. Boros, E., Hammer, P.L., Sun, R., Tavares, G.: A max-flow approach to improved lower bounds for quadratic 0-1 minimization. Discrete Optim. 5(2), 501–529 (2008) MathSciNetMATHCrossRefGoogle Scholar
  7. Chardaire, P., Sutter, A.: A decomposition method for quadratic zero-one programming. Manag. Sci. 41(4), 704–712 (1994) CrossRefGoogle Scholar
  8. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. Freeman, New York (1979) MATHGoogle Scholar
  9. Glover, F.: Heuristics for integer programming using surrogate constraints. Decis. Sci. 8(1), 156–166 (1977) CrossRefGoogle Scholar
  10. Glover, F.: Adaptive memory projection methods for integer programming. In: Rego, C., Alidaee, B. (eds.) Metaheuristic Optimization Via Memory and Evolution, pp. 425–440. Kluwer Academic, Dordrecht (2005) CrossRefGoogle Scholar
  11. Glover, F., Hao, J.K.: Efficient evaluations for solving large 0-1 unconstrained quadratic optimization problems. Int. J. Metaheuristics 1(1), 3–10 (2010) MathSciNetMATHCrossRefGoogle Scholar
  12. Glover, F., Laguna, M.: Tabu Search. Kluwer Academic, Boston (1997) MATHCrossRefGoogle Scholar
  13. Glover, F., Kochenberger, G.A., Alidaee, B.: Adaptive memory tabu search for binary quadratic programs. Manag. Sci. 44, 336–345 (1998) MATHCrossRefGoogle Scholar
  14. Glover, F., Alidaee, B., Rego, C., Kochenberger, G.A.: One-pass heuristics for large-scale unconstrained binary quadratic problems. Eur. J. Oper. Res. 137, 272–287 (2002) MathSciNetMATHCrossRefGoogle Scholar
  15. Glover, F., Lü, Z., Hao, J.K.: Diversification-driven tabu search for unconstrained binary quadratic problems. 4OR, Q. J. Oper. Res. 8(3), 239–253 (2010) MATHCrossRefGoogle Scholar
  16. Harary, F.: On the notion of balance of a signed graph. Mich. Math. J. 2, 143–146 (1953) CrossRefGoogle Scholar
  17. Horst, R., Pardalos, P.M., Thoai, N.V.: Introduction to Global Optimization. Kluwer Academic, Boston (2000) MATHGoogle Scholar
  18. Katayama, K., Narihisa, H.: Performance of simulated annealing-based heuristic for the unconstrained binary quadratic programming problem. Eur. J. Oper. Res. 134, 103–119 (2001) MathSciNetMATHCrossRefGoogle Scholar
  19. Kilby, P., Slaney, J.K., Thiebaux, S.T.: Backbones and backdoors in satisfiability. In: Proceedings of AAAI-2005, pp. 1368–1373 (2005) Google Scholar
  20. Kochenberger, G.A., Glover, F., Alidaee, B., Rego, C.: A unified modeling and solution framework for combinatorial optimization problems. OR Spektrum 26, 237–250 (2004) MATHCrossRefGoogle Scholar
  21. Kochenberger, G.A., Glover, F., Alidaee, B., Rego, C.: An unconstrained quadratic binary programming approach to the vertex coloring problem. Ann. Oper. Res. 139, 229–241 (2005) MathSciNetMATHCrossRefGoogle Scholar
  22. Krarup, J., Pruzan, A.: Computer aided layout design. Math. Program. Stud. 9, 75–94 (1978) MathSciNetCrossRefGoogle Scholar
  23. Lewis, M., Kochenberger, G.A., Alidaee, B.: A new modeling and solution approach for the set-partitioning problem. Comput. Oper. Res. 35(3), 807–813 (2008) MathSciNetMATHCrossRefGoogle Scholar
  24. Lewis, M., Alidaee, B., Glover, F., Kochenberger, G.A.: A note on xqx as a modelling and solution framework for the linear ordering problem. Int. J. Oper. Res. 5(2), 152–162 (2009) MATHCrossRefGoogle Scholar
  25. Lü, Z., Glover, F., Hao, J.K.: A hybrid metaheuristic approach to solving the ubqp problem. Eur. J. Oper. Res. 207(3), 1254–1262 (2010) MATHCrossRefGoogle Scholar
  26. McBride, R.D., Yormark, J.S.: An implicit enumeration algorithm for quadratic integer programming. Manag. Sci. 26, 282–296 (1980) MathSciNetMATHCrossRefGoogle Scholar
  27. Merz, P., Katayama, K.: Memetic algorithms for the unconstrained binary quadratic programming problem. Biosystems 78, 99–118 (2004) CrossRefGoogle Scholar
  28. Monasson, R., Zecchina, R., Kirkpatrick, S., Selman, B., Troyansky, L.: Determining computational complexity for characteristic ‘phase transitions’. Nature 400, 133–137 (1998) MathSciNetGoogle Scholar
  29. Palubeckis, G.: Multistart tabu search strategies for the unconstrained binary quadratic optimization problem. Ann. Oper. Res. 131, 259–282 (2004) MathSciNetMATHCrossRefGoogle Scholar
  30. Palubeckis, G.: Iterated tabu search for the unconstrained binary quadratic optimization problem. Informatica 17(2), 279–296 (2006) MathSciNetMATHGoogle Scholar
  31. Wilbaut, C., Salhi, S., Hanafi, S.: An iterative variable-based fixation heuristic for 0-1 multidimensional knapsack problem. Eur. J. Oper. Res. 199, 339–348 (2009) MathSciNetMATHCrossRefGoogle Scholar
  32. Zhang, W.: Configuration landscape analysis and backbone guided local search. Part 1: Satisfiability and maximum satisfiability. Artif. Intell. 158, 1–26 (2004) MATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Yang Wang
    • 2
  • Zhipeng Lü
    • 2
  • Fred Glover
    • 1
  • Jin-Kao Hao
    • 2
  1. 1.OptTek Systems, Inc.BoulderUSA
  2. 2.LERIAUniversité d’AngersAngers Cedex 01France

Personalised recommendations