Journal of Heuristics

, Volume 19, Issue 2, pp 275–294 | Cite as

Local search for a multi-drop multi-container loading problem

  • Sara CeschiaEmail author
  • Andrea Schaerf


We consider a complex variant of the Container Loading Problem arising from a real-world industrial application. It includes several features such as multiple containers, box rotation, and bearable weight, which are of importance in many practical situations. In addition, it also considers the situation in which boxes have to be delivered to different destinations (multi-drop).

Our solution technique is based on local search metaheuristics. Local search works on the space of sequences of boxes to be loaded, while the actual load is obtained by invoking, at each iteration, a specialized procedure called loader. The loader inserts the boxes in the container using a deterministic heuristic which produces a load that is feasible according to the constraints.

We test our solver on real-world instances provided by our industrial partner, showing a clear improvement on the previous heuristic solution. In addition, we compare our solver on benchmarks from the literature on the basic container loading problems. The outcome is that the results are in some cases in-line with the best ones in the literature and for other cases they also improve upon the best known ones. All instances and solutions are made available on the web for future comparisons.


Container loading 3D packing Heuristics Simulated annealing Tabu search 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aarts, E.H., Korst, J., van Laarhoven, P.J.: Simulated annealing. In: Aarts, E.H., Lenstra, J.K. (eds.) Local Search in Combinatorial Optimization. Wiley, Chichester (1997) Google Scholar
  2. Bischoff, E.: Three-dimensional packing of items with limited load bearing strength. J. Oper. Res. 168(3), 952–966 (2006) zbMATHCrossRefGoogle Scholar
  3. Bischoff, E.E., Ratcliff, M.S.W.: Issues in the development of approaches to container loading. Omega 23(4), 377–390 (1995) CrossRefGoogle Scholar
  4. Bischoff, E.E., Janetz, F., Ratcliff, M.S.W.: Loading pallets with non-identical items. Eur. J. Oper. Res. 84(3), 681–692 (1995) zbMATHCrossRefGoogle Scholar
  5. Bortfeldt, A.: A heuristic for multiple container loading problems. OR Spektrum 22, 239–261 (2000). In German MathSciNetzbMATHCrossRefGoogle Scholar
  6. Bortfeldt, A., Gehring, H.: A tabu search algorithm weakly heterogeneous container loading problem. OR Spektrum 20, 237–250 (1998). In German MathSciNetzbMATHGoogle Scholar
  7. Bortfeldt, A., Gehring, H.: A hybrid genetic algorithm for the container loading problem. Eur. J. Oper. Res. 131(1), 143–161 (2001) zbMATHCrossRefGoogle Scholar
  8. Bortfeldt, A., Homberger, J.: Packing first, routing second—a heuristic for the vehicle routing and loading problem. In: Bortfeldt, A., Homberger, J., Kopfer, H., Pankratz, G., Strangmeier, R. (eds.) Intelligent Decision Support—Current Challenges and Approaches, Intelligente Entscheidungsunterstützung—Aktuelle Herausforderungen und LösungsansätzeIntelligent Decision Support, pp. 91–113. Deutscher Universitäts-Verlag, Wiesbaden (2008). In German CrossRefGoogle Scholar
  9. Bortfeldt, A., Gehring, H., Mack, D.: A parallel tabu search algorithm for solving the container loading problem. Parallel Comput. 29(5), 641–662 (2003) CrossRefGoogle Scholar
  10. Davies, A.: Approaches to the container loading problem. PhD thesis, University of Wales, Swansea (2000) Google Scholar
  11. Davies, A.P., Bischoff, E.E.: Weight distribution considerations in container loading. Eur. J. Oper. Res. 114(3), 509–527 (1999) zbMATHCrossRefGoogle Scholar
  12. Eglese, R.: Simulated annealing: a tool for operations research. Eur. J. Oper. Res. 46, 271–281 (1990) MathSciNetzbMATHCrossRefGoogle Scholar
  13. Eley, M.: Solving container loading problems by block arrangement. Eur. J. Oper. Res. 141(2), 393–409 (2002) MathSciNetzbMATHCrossRefGoogle Scholar
  14. Eley, M.: A bottleneck assignment approach to the multiple container loading problem. OR Spektrum 25(1), 45–60 (2003) MathSciNetzbMATHCrossRefGoogle Scholar
  15. Fanslau, T., Bortfeldt, A.: A tree search algorithm for solving the container loading problem. INFORMS J. Comput. 22(2), 222–235 (2010) MathSciNetzbMATHCrossRefGoogle Scholar
  16. Fuellerer, G., Doerner, K.F., Hartl, R.F., Iori, M.: Metaheuristics for vehicle routing problems with three-dimensional loading constraints. Eur. J. Oper. Res. 201(3), 751–759 (2010) zbMATHCrossRefGoogle Scholar
  17. Gehring, H., Bortfeldt, A.: A parallel genetic algorithm for solving the container loading problem. Int. Trans. Oper. Res. 9(4), 497–511 (2002) MathSciNetzbMATHCrossRefGoogle Scholar
  18. Gendreau, M., Iori, M., Laporte, G., Martello, S.: A tabu search algorithm for a routing and container loading problem. Transp. Sci. 40(3), 342–350 (2006) CrossRefGoogle Scholar
  19. George, J.A., Robinson, D.F.: A heuristic for packing boxes into a container. Comput. Oper. Res. 7(3), 147–156 (1980) CrossRefGoogle Scholar
  20. Glover, F., Laguna, M.: Tabu Search. Kluwer Academic, Dordrecht (1997) zbMATHCrossRefGoogle Scholar
  21. Hoos, H.H., Stützle, T.: Stochastic Local Search—Foundations and Applications. Morgan Kaufmann, San Francisco (2005) zbMATHGoogle Scholar
  22. Ivancic, N., Mathur, K., Mohanty, B.: An integer programming based heuristic approach to the three-dimensional packing problem. J. Manuf. Oper. Manag. 2(4), 268–298 (1989) MathSciNetGoogle Scholar
  23. Kirkpatrick, S., Gelatt, C.D. Jr., Vecchi, M.P.: Optimization by simulated annealing. Science 220, 671–680 (1983) MathSciNetzbMATHCrossRefGoogle Scholar
  24. Mack, D., Bortfeldt, A., Gehring, H.: A parallel hybrid local search algorithm for the container loading problem. Int. Trans. Oper. Res. 11(5), 511–533 (2004) zbMATHCrossRefGoogle Scholar
  25. Moura, A., Oliveira, J.F.: A grasp approach to the container-loading problem. IEEE Intell. Syst. 20, 50–57 (2005) CrossRefGoogle Scholar
  26. Moura, A., Oliveira, J.F.: An integrated approach to the vehicle routing and container loading problems. OR Spektrum 31(4), 775–800 (2009) MathSciNetzbMATHCrossRefGoogle Scholar
  27. Parreño, F., Alvarez-Valdes, R., Oliveira, J., Tamarit, J.: A maximal-space algorithm for the container loading problem. INFORMS J. Comput. 20(3), 412–422 (2008) MathSciNetzbMATHCrossRefGoogle Scholar
  28. Parreño, F., Alvarez-Valdes, R., Oliveira, J., Tamarit, J.: Neighborhood structures for the container loading problem: a VNS implementation. J. Heuristics 16(1), 1–22 (2010) zbMATHCrossRefGoogle Scholar
  29. Pisinger, D.: A tree search heuristic for the container loading problem. Ric. Oper. 28, 31–48 (1998) Google Scholar
  30. Pisinger, D.: Heuristics for the container loading problem. Eur. J. Oper. Res. 141, 382–392 (2002) MathSciNetzbMATHCrossRefGoogle Scholar
  31. Raidl, G.R.: The multiple container packing problem: a genetic algorithm approach with weighted codings. ACM SIGAPP Appl. Comput. Rev. 7(2), 22–31 (1999) CrossRefGoogle Scholar
  32. Raidl, G.R., Kodydek, G.: Genetic algorithms for the multiple container packing problem. In: PPSN V: Proceedings of the 5th International Conference on Parallel Problem Solving from Nature, pp. 875–884. Springer, London (1998) CrossRefGoogle Scholar
  33. Ratcliff, M., Bischoff, E.: Allowing for weight considerations in container loading. OR Spektrum 20, 65–71 (1998) zbMATHCrossRefGoogle Scholar
  34. Sang-Moon, S., Lee, S.-W., Yeo, G.-T., Jeon, M.-G.: An effective evolutionary algorithm for the multiple container packing problem. Prog. Nat. Sci. 18(3), 337–344 (2008) CrossRefGoogle Scholar
  35. Tarantilis, C., Zachariadis, E.E., Kiranoudis, C.T.: A hybrid metaheuristic algorithm for the integrated vehicle routing and three-dimensional container-loading problem. IEEE Trans. Intell. Trasp. Syst. 10(2), 1524–9050 (2009) Google Scholar
  36. Toth, P., Vigo, D. (eds.): The Vehicle Routing Problem. Monographs on Discrete Mathematics and Applications. SIAM, Philadelphia (2002) zbMATHGoogle Scholar
  37. Venables, W.N., Ripley, B.D.: Modern Applied Statistics with S, 4th edn. Statistics and Computing. Springer, Berlin (2002) zbMATHCrossRefGoogle Scholar
  38. Wang, L., Guo, S., Chen, S., Zhu, W., Lim, A.: Two natural heuristics for 3D packing with practical loading constraints. In: PRICAI 2010: Trends in Artificial, pp. 256–267 (2010) CrossRefGoogle Scholar
  39. Wäscher, G., Haußner, H., Schumann, H.: An improved typology of cutting and packing problems. Eur. J. Oper. Res. 183(3), 1109–1130 (2007) zbMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.DIEGMUniversity of UdineUdineItaly

Personalised recommendations