Journal of Heuristics

, Volume 18, Issue 1, pp 119–148 | Cite as

The balanced academic curriculum problem revisited

  • Marco Chiarandini
  • Luca Di Gaspero
  • Stefano Gualandi
  • Andrea Schaerf
Article

Abstract

The Balanced Academic Curriculum Problem (BACP) consists in assigning courses to teaching terms satisfying prerequisites and balancing the credit course load within each term. The BACP is part of the CSPLib with three benchmark instances, but its formulation is simpler than the problem solved in practice by universities. In this article, we introduce a generalized version of the problem that takes different curricula and professor preferences into account, and we provide a set of real-life problem instances arisen at University of Udine. Since the existing formulation based on a min–max objective function does not balance effectively the credit load for the new instances, we also propose alternative objective functions. Whereas all the CSPLib instances are efficiently solved with Integer Linear Programming (ILP) state-of-the-art solvers, our new set of real-life instances turns out to be much more challenging and still intractable for ILP solvers. Therefore, we have designed, implemented, and analyzed heuristics based on local search. We have collected computational results on all the new instances with the proposed approaches and assessed the quality of solutions with respect to the lower bounds found by ILP on a relaxed and decomposed problem. Results show that a selected heuristic finds solutions of quality at 9%–60% distance from the lower bound. We make all data publicly available, in order to stimulate further research on this problem.

Keywords

Combinatorial optimization Metaheuristic methodologies Timetabling Local search 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ahuja, R., Ergun, Ö., Orlin, J., Punnen, A.: A survey of very-large-scale neighborhood search techniques. Discrete Appl. Math. 123, 75–102 (2002) MathSciNetMATHCrossRefGoogle Scholar
  2. Birattari, M., Stützle, T., Paquete, L., Varrentrapp, K.: A racing algorithm for configuring metaheuristics. In: Langdon, W.B., et al. (eds.) Proceedings of the Genetic and Evolutionary Computation Conference (GECCO-2002), pp. 11–18. Morgan Kaufmann, San Mateo (2002) Google Scholar
  3. Castro, C., Crawford, B., Monfroy, E.: A quantitative approach for the design of academic curricula. In: HCI. Lecture Notes in Computer Science, vol. 4558, pp. 279–288. Springer, Berlin (2007) Google Scholar
  4. Castro, C., Manzano, S.: Variable and value ordering when solving balanced academic curriculum problems. In: 6th Workshop of the ERCIM WG on Constraints (2001) Google Scholar
  5. Di Gaspero, L., Schaerf, A.: EasyLocal++: An object-oriented framework for flexible design of local search algorithms. Softw. Pract. Exp. 33(8), 733–765 (2003) CrossRefGoogle Scholar
  6. Di Gaspero, L., Schaerf, A.: Neighborhood portfolio approach for local search applied to timetabling problems. J. Math. Model. Algorithms 5(1), 65–89 (2006) MathSciNetMATHCrossRefGoogle Scholar
  7. Di Gaspero, L., Schaerf, A.: Hybrid local search techniques for the generalized balanced academic curriculum problem. In: Blesa, M.J., Blum, C., Cotta, C., Fernández, A.J., Gallardo, J.E., Roli, A., Sampels, M. (eds.) Hybrid Metaheuristics. Lecture Notes in Computer Science, vol. 5296, pp. 146–157. Springer, Berlin (2008) CrossRefGoogle Scholar
  8. Dorne, R., Hao, J.: A new genetic local search algorithm for graph coloring. In: Eiben, A.E., Bäck, T., Schoenauer, M., Schwefel, H.-P. (eds.) Parallel Problem Solving from Nature—PPSN V, 5th International Conference. Lecture Notes in Computer Science, vol. 1498, pp. 745–754. Springer, Berlin (1998) CrossRefGoogle Scholar
  9. Ehrgott, M.: Multicriteria Optimization, 2nd edn. Lecture Notes in Economics and Mathematical Systems. Springer, Berlin Heidelberg (2005) MATHGoogle Scholar
  10. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of Open image in new window-Completeness. Freeman, New York (1979) Google Scholar
  11. Gent, I.P., Walsh, T.: CSPLib: a benchmark library for constraints. Technical report APES-09-1999. Available from http://csplib.cs.strath.ac.uk/. A shorter version appears in the Proceedings of the 5th International Conference on Principles and Practices of Constraint Programming (CP-99). LNCS, vol. 1713, pp. 480–481. Springer, Berlin (1999)
  12. Glover, F.: Ejection chains, reference structures and alternating path methods for traveling salesman problems. Discrete Appl. Math. 65(1–3), 223–253 (1996) MathSciNetMATHCrossRefGoogle Scholar
  13. Hansen, P., Mladenović, N.: An introduction to variable neighbourhood search. In: Voß, S., Martello, S., Osman, I., Roucairol, C. (eds.) Meta-Heuristics: Advances and Trends in Local Search Paradigms for Optimization, pp. 433–458. Kluwer Academic, Dordrecht (1999) CrossRefGoogle Scholar
  14. Hnich, B., Kızıltan, Z., Walsh, T.: Modelling a balanced academic curriculum problem. In: CP-AI-OR 2002, pp. 121–131 (2002) Google Scholar
  15. Hoos, H.: Stochastic local search—methods, models, application. Ph.D. thesis, Darmstadt University of Technology, Darmstadt, Germany (1999) Google Scholar
  16. Hoos, H.H., Stützle, T.: Stochastic Local Search—Foundations and Applications. Morgan Kaufmann, San Mateo (2005) MATHGoogle Scholar
  17. Lambert, T., Castro, C., Monfroy, E., Saubion, F.: Solving the balanced academic curriculum problem with an hybridization of genetic algorithm and constraint propagation. In: Artificial Intelligence and Soft Computing—ICAISC 2006. Lecture Notes in Computer Science, vol. 4029, pp. 410–419. Springer, Berlin (2006) CrossRefGoogle Scholar
  18. Lourenço, H.R., Martin, O., Stützle, T.: Applying iterated local search to the permutation flow shop problem. In: Glover, F., Kochenberger, G. (eds.) Handbook of Metaheuristics. Kluwer Academic, Dordrecht (2001) Google Scholar
  19. Monette, J., Schaus, P., Zampelli, S., Deville, Y., Dupont, P.: A CP approach to the balanced academic curriculum problem. In: Benhamou, B., Choueiry, B., Hnich, B. (eds.) Symcon’07, The Seventh International Workshop on Symmetry and Constraint Satisfaction Problems (2007) Google Scholar
  20. Müller, T., Murray, K.: Comprehensive approach to student sectioning. Ann. Oper. Res. 181(1), 249–269 (2010). doi:10.1007/s10479-010-0735-9 MathSciNetCrossRefGoogle Scholar
  21. Pesant, G., Régin, J.-C.: Spread: a balancing constraint based on statistics. In: van Beek, P. (ed.) Principles and Practice of Constraint Programming—CP 2005, 11th International Conference, CP 2005, Proceedings, Sitges, Spain, 1–5 October 2005. Lecture Notes in Computer Science, vol. 3709, pp. 460–474. Springer, Berlin (2005) CrossRefGoogle Scholar
  22. Schaerf, A.: A survey of automated timetabling. Artif. Intell. Rev. 13(2), 87–127 (1999) CrossRefGoogle Scholar
  23. Schaerf, A., Di Gaspero, L.: Measurability and reproducibility in timetabling research: discussion and proposals. In: Burke, E., Rudová, H. (eds.) Proc. of the 6th Int. Conf. on the Practice and Theory of Automated Timetabling (PATAT-2006), Selected Papers. Lecture Notes in Computer Science, vol. 3867, pp. 40–49. Springer, Berlin-Heidelberg (2007) CrossRefGoogle Scholar
  24. Schaus, P., Deville, Y., Dupont, P., Régin, J.-C.: The deviation constraint. In: Hentenryck, P.V., Wolsey, L.A. (eds.) CPAIOR. Lecture Notes in Computer Science, vol. 4510, pp. 260–274. Springer, Berlin (2007) Google Scholar
  25. Schaus, P., Hentenryck, P.V., Régin, J.-C.: Scalable load balancing in nurse to patient assignment problems. In: van Hoeve, W.J., Hooker, J.N. (eds.) CPAIOR. Lecture Notes in Computer Science, vol. 5547, pp. 248–262. Springer, Berlin (2009) Google Scholar
  26. Taillard, E.D.: Robust taboo search for the quadratic assignment problem. Parallel Comput. 17(4–5), 443–455 (1991) MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Marco Chiarandini
    • 1
  • Luca Di Gaspero
    • 2
  • Stefano Gualandi
    • 3
  • Andrea Schaerf
    • 2
  1. 1.IMADAUniversity of Southern DenmarkOdenseDenmark
  2. 2.DIEGMUniversity of UdineUdineItaly
  3. 3.DEIPolitecnico di MilanoMilanItaly

Personalised recommendations