Journal of Heuristics

, Volume 17, Issue 5, pp 527–565 | Cite as

GRASP with path-relinking for the generalized quadratic assignment problem

  • Geraldo R. Mateus
  • Mauricio G. C. Resende
  • Ricardo M. A. Silva
Article

Abstract

The generalized quadratic assignment problem (GQAP) is a generalization of the NP-hard quadratic assignment problem (QAP) that allows multiple facilities to be assigned to a single location as long as the capacity of the location allows. The GQAP has numerous applications, including facility design, scheduling, and network design. In this paper, we propose several GRASP with path-relinking heuristics for the GQAP using different construction, local search, and path-relinking procedures. We introduce a novel approximate local search scheme, as well as a new variant of path-relinking that deals with infeasibilities. Extensive experiments on a large set of test instances show that the best of the proposed variants is both effective and efficient.

Keywords

Generalized quadratic assignment problem Heuristic GRASP Path-relinking Experimental algorithm 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aiex, R.M., Resende, M.G.C., Ribeiro, C.C.: Probability distribution of solution time in GRASP: An experimental investigation. J. Heuristics 8, 343–373 (2002) MATHCrossRefGoogle Scholar
  2. Aiex, R.M., Binato, S., Resende, M.G.C.: Parallel GRASP with path-relinking for job shop scheduling. Parallel Comput. 29, 393–430 (2003) MathSciNetCrossRefGoogle Scholar
  3. Aiex, R.M., Pardalos, P.M., Resende, M.G.C., Toraldo, G.: GRASP with path-relinking for three-index assignment. INFORMS J. Comput. 17, 224–247 (2005) MathSciNetCrossRefGoogle Scholar
  4. Aiex, R.M., Resende, M.G.C., Ribeiro, C.C.: TTTPLOTS: A Perl program to create time-to-target plots. Opt. Lett. 1, 201–212 (2007) MathSciNetCrossRefGoogle Scholar
  5. Anstreicher, K., Brixius, N., Goux, J.P., Linderoth, J.: Solving large quadratic assignment problems on computational grids. Math. Program. 91, 563–588 (2002) MathSciNetMATHCrossRefGoogle Scholar
  6. Barahona, F., Anbil, R.: The volume algorithm: producing primal solutions with a subgradient method. Math. Program. 87, 385–399 (2000) MathSciNetMATHCrossRefGoogle Scholar
  7. Burkard, R.E.: Locations with spatial interactions: the quadratic assignment problem. In: Discrete Location Theory, pp. 89–98. Wiley, New York (1991) Google Scholar
  8. Cordeau, J.-F., Gaudioso, M., Laporte, G., Moccia, L.: A memetic heuristic for the generalized quadratic assignment problem. INFORMS J. Comput. 18, 433–443 (2006) MathSciNetCrossRefGoogle Scholar
  9. Elloumi, S.: Contribution à la résolution des programmes non linéaires en variables 0-1, application aux problèmes de placement de tâches dans les systèmes distribués (thèse de doctorat in informatique). Technical report, Conservatoire National des Arts et Métiers, Paris (1991) Google Scholar
  10. Elloumi, S., Roupin, F., Soutif, E.: Comparison of different lower bounds for the constrained module allocation problem. Technical Report 473, CNAM-Laboratoire Cédric, 292 Rue St Martin, 75141 Paris Cedex 03, France (2003) Google Scholar
  11. Faria, H. Jr., Binato, S., Resende, M.G.C., Falcão, D.J.: Transmission network design by a greedy randomized adaptive path relinking approach. IEEE Trans. Power Syst. 20(1), 43–49 (2005) CrossRefGoogle Scholar
  12. Feo, T.A., Resende, M.G.C.: A probabilistic heuristic for a computationally difficult set covering problem. Oper. Res. Lett. 8, 67–71 (1989) MathSciNetMATHCrossRefGoogle Scholar
  13. Feo, T.A., Resende, M.G.C.: Greedy randomized adaptive search procedures. J. Global Optim. 6, 109–133 (1995) MathSciNetMATHCrossRefGoogle Scholar
  14. Festa, P., Resende, M.G.C.: GRASP: An annotated bibliography. In: Ribeiro, C.C., Hansen, P. (eds.) Essays and Surveys on Metaheuristics, pp. 325–367. Kluwer Academic, Norwell (2002) Google Scholar
  15. Festa, P., Resende, M.G.C.: An annotated bibliography of GRASP—Part I: Algorithms. Int. Trans. Oper. Res. 16, 1–24 (2009a) MathSciNetMATHCrossRefGoogle Scholar
  16. Festa, P., Resende, M.G.C.: An annotated bibliography of GRASP—Part II: Applications. Int. Trans. Oper. Res. 16, 131–172 (2009b) MathSciNetMATHCrossRefGoogle Scholar
  17. Frieze, A., Yadegar, J.: On the quadratic assignment problem. Discrete Appl. Math. 5, 89–98 (1983) MathSciNetMATHCrossRefGoogle Scholar
  18. Glover, F.: Tabu search and adaptive memory programing—Advances, applications and challenges. In: Barr, R.S., Helgason, R.V., Kennington, J.L. (eds.) Interfaces in Computer Science and Operations Research, pp. 1–75. Kluwer Academic, Norwell (1996) Google Scholar
  19. Glover, F., Laguna, M., Martí, R.: Fundamentals of scatter search and path relinking. Control Cybern. 39, 653–684 (2000) Google Scholar
  20. Hahn, P.M., Kim, B.-J., Guignard, M., MacGregor Smith, J., Zhu, Y.-R.: An algorithm for the generalized quadratic assignment problem. Comput. Optim. Appl. 401, 351–372 (2008) CrossRefGoogle Scholar
  21. Kaufman, L., Broeckx, F.: An algorithm for the quadratic assignment problem using benders decomposition. Eur. J. Oper. Res. 2, 204–211 (1978) CrossRefGoogle Scholar
  22. Laguna, M., Martí, R.: GRASP and path relinking for 2-layer straight line crossing minimization. INFORMS J. Comput. 11, 44–52 (1999) MATHCrossRefGoogle Scholar
  23. Lee, C.-G., Ma, Z.: The generalized quadratic assignment problem. Technical Report MIEOR TR2005-01, Department of Mechanical and Industrial Engineering at the University of Toronto (2005) Google Scholar
  24. Li, Y., Pardalos, P.M., Resende, M.G.C.: A greedy randomized adaptive search procedure for the quadratic assignment problem. In: Pardalos, P.M., Wolkowicz, H. (eds.) Quadratic Assignment and Related Problems. DIMACS Series in Discrete Matehematics and Theoretical Computer Science, vol. 16, pp. 237–261. American Mathematical Society, Providence (1994) Google Scholar
  25. Matsumoto, M., Nishimura, T.: Mersenne twister: A 623-dimensionally equidistributed uniform pseudo-random number generator. ACM Trans. Model. Comput. Simul. 8, 3–30 (1998) MATHCrossRefGoogle Scholar
  26. Oliveira, C.A.S., Pardalos, P.M., Resende, M.G.C.: GRASP with path-relinking for the quadratic assignment problem. In: Ribeiro, C.C., Martins, S.L. (eds.) Efficient and Experimental Algorithms. Lecture Notes in Computer Science, vol. 3059, pp. 356–368. Springer-Verlag, Berlin (2004) CrossRefGoogle Scholar
  27. Padberg, M., Rijal, M.: Location, Scheduling, Design and Integer Programming. Kluwer Academic, Norwell (1996) MATHGoogle Scholar
  28. Pardalos, P.M., Rendl, F., Wolkowicz, H.: The quadratic assignment problem: A survey and recent development. In: Pardalos, P.M., Wolkowicz, H. (eds.) The Quadratic Assignment and Related Problems. DIMACS Series in Discrete Matehematics and Theoretical Computer Science, vol. 16, pp. 1–42. American Mathematical Society, Providence (1994) Google Scholar
  29. Pessoa, A.A., Hahn, P.M., Guignard, M., Zhu, Y.-R.: An improved algorithm for the generalized quadratic assignment problem. Technical Report MIEOR TR2005-01, Electrical and Systems Engineering at the University of Pennsylvania (2008) Google Scholar
  30. Resende, M.G.C., Ribeiro, C.C.: Greedy randomized adaptive search procedures. In: Glover, F., Kochenberger, G. (eds.) Handbook of Metaheuristics, pp. 219–249. Kluwer Academic, Norwell (2002) Google Scholar
  31. Resende, M.G.C., Ribeiro, C.C.: A GRASP with path-relinking for private virtual circuit routing. Networks 41(1), 104–114 (2003) MathSciNetMATHCrossRefGoogle Scholar
  32. Resende, M.G.C., Ribeiro, C.C.: GRASP with path-relinking: Recent advances and applications. In: Ibaraki, T., Nonobe, K., Yagiura, M. (eds.) Metaheuristics: Progress as Real Problem Solvers, pp. 29–63. Springer-Verlag, Berlin (2005) CrossRefGoogle Scholar
  33. Resende, M.G.C., Ribeiro, C.C.: Greedy randomized adaptive search procedures: Advances and applications. In: Gendreau, M., Potvin, J.-Y. (eds.) Handbook of Metaheuristics, 2nd edn. Springer Science+Business Media, Berlin (2010) Google Scholar
  34. Ribeiro, C.C., Rosseti, I.: A parallel GRASP for the 2-path network design problem. In: Lecture Notes in Computer Science, vol. 2004, pp. 922–926. Springer-Verlag, Berlin (2002) Google Scholar
  35. Ribeiro, C.C., Uchoa, E., Werneck, R.F.: A hybrid GRASP with perturbations for the Steiner problem in graphs. INFORMS J. Comput. 14, 228–246 (2002) MathSciNetCrossRefGoogle Scholar
  36. Roupin, F.: From linear to semidefinite programming: An algorithm to obtain semidefinite relaxations for bivalent quadratic problems. J. Combin. Optim. 8, 469–493 (2004) MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Geraldo R. Mateus
    • 1
  • Mauricio G. C. Resende
    • 2
  • Ricardo M. A. Silva
    • 3
    • 4
  1. 1.Dept. of Computer ScienceFederal University of Minas GeraisBelo HorizonteBrazil
  2. 2.Algorithms and Optimization Research DepartmentAT&T Labs ResearchFlorham ParkUSA
  3. 3.Computational Intelligence and Optimization Group, Dept. of Computer ScienceFederal University of LavrasLavrasBrazil
  4. 4.Centro de Informática (CIn)Federal University of PernambucoRecifeBrazil

Personalised recommendations