Journal of Heuristics

, Volume 17, Issue 5, pp 467–486 | Cite as

A biased random-key genetic algorithm with forward-backward improvement for the resource constrained project scheduling problem

  • José Fernando Gonçalves
  • Mauricio G. C. Resende
  • Jorge J. M. Mendes
Article

Abstract

This paper presents a biased random-key genetic algorithm for the resource constrained project scheduling problem. The chromosome representation of the problem is based on random keys. Active schedules are constructed using a priority-rule heuristic in which the priorities of the activities are defined by the genetic algorithm. A forward-backward improvement procedure is applied to all solutions. The chromosomes supplied by the genetic algorithm are adjusted to reflect the solutions obtained by the improvement procedure. The heuristic is tested on a set of standard problems taken from the literature and compared with other approaches. The computational results validate the effectiveness of the proposed algorithm.

Keywords

Project management Scheduling Genetic algorithms Random keys Forward-backward improvement Resource constrained project scheduling problem 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alvarez-Valdez, R., Tamarit, J.M.: Heuristic algorithms for resource-constrained project scheduling: a review and empirical analysis. In: Slowinski, R., Weglarz, J. (eds.) Advances in Project Scheduling, pp. 113–134. Elsevier, Amsterdam (1989) Google Scholar
  2. Baar, T., Brucker, P., Knust, S.: Tabu-search algorithms and lower bounds for the resource-constrained project scheduling problem. In: Voss, S., Martello, S., Osman, I., Roucairol, C. (eds.) Meta-Heuristics: Advances and Trends in Local Search paradigms for optimization, pp. 1–8. Kluwer, Dordrecht (1998) Google Scholar
  3. Bean, J.C.: Genetics and random keys for sequencing and optimization. ORSA J. Comput. 6, 154–160 (1994) MATHGoogle Scholar
  4. Blazewicz, J., Lenstra, J.K., Rinnooy Kan, A.H.G.: Scheduling subject to resource constraints: classification and complexity. Discrete Appl. Math. 5, 11–24 (1983) MathSciNetMATHCrossRefGoogle Scholar
  5. Boctor, F.F.: Some efficient multi-heuristic procedures for resource-constrained project scheduling. Eur. J. Oper. Res. 49, 3–13 (1990) CrossRefGoogle Scholar
  6. Boctor, F.F.: An adaptation of the simulated annealing algorithm for solving resource-constrained project scheduling problems. Int. J. Prod. Res. 34, 2335–2351 (1996) MATHCrossRefGoogle Scholar
  7. Bouleimen, K., Lecocq, H.: A new efficient simulated annealing algorithm for the resource-constrained project scheduling problem and its multiple mode version. Eur. J. Oper. Res. 149, 268–281 (2003) MathSciNetMATHCrossRefGoogle Scholar
  8. Brucker, P., Knust, S.: Lower bounds for resource-constrained project scheduling problems. Eur. J. Oper. Res. 149, 302–313 (2003) MathSciNetMATHCrossRefGoogle Scholar
  9. Brucker, P., Knust, S.: Complex Scheduling. Springer, Berlin (2006) MATHGoogle Scholar
  10. Brucker, P., Knust, S., Schoo, A., Thiele, O.: A branch and bound algorithm for the resource-constrained project scheduling problem. Eur. J. Oper. Res. 107, 272–288 (1998) MATHCrossRefGoogle Scholar
  11. Brucker, P., Knust, S.: A linear programming and constraint propagation-based lower bound for the RCPSP. Eur. J. Oper. Res. 127, 355–362 (2000) MATHCrossRefGoogle Scholar
  12. Buriol, L.S., Resende, M.G.C., Ribeiro, C.C., Thorup, M.: A hybrid genetic algorithm for the weight setting problem in OSPF/IS-IS routing. Networks 46(1), 36–56 (2005) MathSciNetMATHCrossRefGoogle Scholar
  13. Cooper, D.F.: Heuristics for scheduling resource-constrained projects: an experimental investigation. Manag. Sci. 22, 1186–1194 (1976) MATHCrossRefGoogle Scholar
  14. Cooper, D.F.: A note on serial and parallel heuristics for resource-constrained project scheduling. Found. Control Eng. 2, 131–133 (1977) MATHGoogle Scholar
  15. Davis, E.W., Patterson, J.H.: A comparison of heuristic and optimum solutions in resource-constrained project scheduling. Manag. Sci. 21, 944–955 (1975) CrossRefGoogle Scholar
  16. Debels, D., Vanhoucke, M.: A decomposition-based heuristic for the resource-constrained project scheduling problem. Tech. Rep. 2005/293, Faculty of Economics and Business Administration, University of Ghent, Ghent, Belgium (2005) Google Scholar
  17. Debels, D., De Reyck, B., Leus, R., Vanhoucke, M.: A hybrid scatter search/electromagnetism meta-heuristic for project scheduling. Eur. J. Oper. Res. 169, 638–653 (2006) MathSciNetMATHCrossRefGoogle Scholar
  18. Demassey, S., Artigues, C., Michelon, P.: Constraint-propagation-base cutting planes: an application to the resource-constrained project scheduling problem. INFORMS J. Comput. 17, 52–65 (2005) MathSciNetCrossRefGoogle Scholar
  19. Demeulemeester, E., Herroelen, W.: New benchmark results for the resource-constrained project scheduling problem. Manag. Sci. 43, 1485–1492 (1997) MATHCrossRefGoogle Scholar
  20. Demeulemeester, E., Herroelen, W.: Project Scheduling—A Research Handbook. Kluwer Academic, Dordrecht (2002) MATHGoogle Scholar
  21. Elmaghraby, S.: Activity Networks: Project Planning and Control by Network Models. Wiley, New York (1977) MATHGoogle Scholar
  22. Fleszar, K., Hindi, K.S.: Solving the resource-constrained project scheduling problem by a variable neighbourhood search. Eur. J. Oper. Res. 155, 402–413 (2004) MathSciNetMATHCrossRefGoogle Scholar
  23. Gagnon, M., Boctor, F.F., d’Avignon, G.: A tabu search algorithm for the resource-constrained project scheduling problem. In: Proceedings of Administrative Sciences Association of Canada Annual Conference (ASAC 2004) (2004) Google Scholar
  24. Goldberg, D.E.: Genetic Algorithms in Search Optimization and Machine Learning. Addison-Wesley, Reading (1989) MATHGoogle Scholar
  25. Gonçalves, J.F.: A hybrid genetic algorithm-heuristic for a two-dimensional orthogonal packing problem. Eur. J. Oper. Res. 183, 1212–1229 (2007) MATHCrossRefGoogle Scholar
  26. Gonçalves, J.F., Almeida, J.R.: A hybrid genetic algorithm for assembly line balancing. J. Heuristics 8, 629–642 (2002) CrossRefGoogle Scholar
  27. Gonçalves, J.F., Resende, M.G.C.: An evolutionary algorithm for manufacturing cell formation. Comput. Ind. Eng. 47, 247–273 (2004) CrossRefGoogle Scholar
  28. Gonçalves, J.F., Resende, M.G.C.: Biased random key genetic algorithms for combinatorial optimization. Tech. rep., AT&T Labs Research Technical Report, Florham Park, NJ 07733, USA. J. Heuristics (2009, to appear) Google Scholar
  29. Gonçalves, J.F., Mendes, J.J.M., Resende, M.G.C.: A hybrid genetic algorithm for the job shop scheduling problem. Eur. J. Oper. Res. 167, 77–95 (2005) MATHCrossRefGoogle Scholar
  30. Hartmann, S.: A competitive genetic algorithm for resource-constrained project scheduling. Nav. Res. Logist. 45, 279–302 (1998) MathSciNetCrossRefGoogle Scholar
  31. Hartmann, S.: A self-adapting genetic algorithm for project scheduling under resource constraints. Nav. Res. Logist. 49, 433–448 (2002) MathSciNetMATHCrossRefGoogle Scholar
  32. Hartmann, S., Kolisch, R.: Experimental evaluation of state-of-the-art heuristics for the resource-constrained project scheduling problem. Eur. J. Oper. Res. 127, 394–407 (2000) MATHCrossRefGoogle Scholar
  33. Klein, R., Scholl, A.: Progress: optimally solving the generalized resource-constrained project scheduling problem. Tech. rep., University of Technology, Darmstadt (1998a) Google Scholar
  34. Klein, R., Scholl, A.: Scattered branch and bound: an adaptive search strategy applied to resource-constrained project scheduling problem. Tech. rep., University of Technology, Darmstadt (1998b) Google Scholar
  35. Kochetov, Y., Stolyar, A.: Evolutionary local search with variable neighborhood for the resource constrained project scheduling problem. In: Proceedings of the 3rd International Workshop of Computer Science and Information Technologies (2003) Google Scholar
  36. Kohlmorgen, U., Schmeck, H., Haase, K.: Experiences with fine-grained parallel genetic algorithms. Ann. Oper. Res. 90, 203–219 (1999) MathSciNetMATHCrossRefGoogle Scholar
  37. Kolisch, R.: Project Scheduling under Resource Constraints: Efficient Heuristics for Several Problem Classes. Physica-Verlag, Heidelburg (1995) Google Scholar
  38. Kolisch, R.: Efficient priority rules for the resource-constrained project scheduling problem. J. Oper. Manag. 14, 179–192 (1996a) CrossRefGoogle Scholar
  39. Kolisch, R.: Serial and parallel resource-constrained project scheduling methods revisite: theory and computation. Eur. J. Oper. Res. 90, 320–333 (1996b) MATHCrossRefGoogle Scholar
  40. Kolisch, R., Drexl, A.: Adaptive search for solving hard project scheduling problems. Nav. Res. Logist. 43, 43–23 (1996) CrossRefGoogle Scholar
  41. Kolisch, R., Hartmann, S.: Heuristic algorithms for solving the resource-constrained project scheduling problem: Classification and computational analysis. In: Weglarz, J. (ed.) Handbook on recent advances in project scheduling, pp. 147–178. Kluwer, Dordrecht (1999) Google Scholar
  42. Kolisch, R., Hartmann, S.: Experimental investigation of heuristics for resource-constrained project scheduling: an update. Eur. J. Oper. Res. 174, 23–37 (2006) MATHCrossRefGoogle Scholar
  43. Kolisch, R., Padman, R.: An integrated survey of deterministic project scheduling. Int. J. Manag. Sci. 29, 249–272 (2001) Google Scholar
  44. Kolisch, R., Sprecher, A., Drexl, A.: Characterization and generation of a general class of resource-constrained project scheduling problems. Manag. Sci. 41, 1693–1703 (1995) MATHCrossRefGoogle Scholar
  45. Lawrence, S.R.: Resource constrained project scheduling—a computational comparison of heuristic scheduling techniques. Tech. rep., Graduate School of Industrial Administration, Carnegie-Mellon University, Pittsburgh (1985) Google Scholar
  46. Lee, J.K., Kim, Y.D.: Search heuristics for resource constrained project scheduling. J. Oper. Res. Soc. 47, 678–689 (1996) MATHGoogle Scholar
  47. Leon, V.J., Ramamoorthy, B.: Strength and adaptability of problem-space based neighborhoods for resource constrained scheduling. OR Spektrum 17, 173–182 (1995) MATHCrossRefGoogle Scholar
  48. Li, K.Y., Willis, R.J.: An iterative scheduling technique for resource-constrained project scheduling. Eur. J. Oper. Res. 56(3), 370–379 (1992). doi: 10.1016/0377-2217(92)90320-9 MATHCrossRefGoogle Scholar
  49. Mendes, J.J.M., Gonñalves, J.F., Resende, M.G.C.: A random key based genetic algorithm for the resource constrained project scheduling problem. Comput. Oper. Res. 36, 92–109 (2009) MathSciNetMATHCrossRefGoogle Scholar
  50. Mingozzi, A., Maniezzo, V., Ricciardelli, S., Bianco, L.: An exact algorithm for project scheduling with resource constraints based on a new mathematical formulation. Manag. Sci. 44, 714–729 (1998) MATHCrossRefGoogle Scholar
  51. Möhring, R.H., Schulz, A.S., Stork, F., Uetz, M.: Solving project scheduling problems by minimum cut computations. Manag. Sci. 49, 330–350 (2003) CrossRefGoogle Scholar
  52. Nonobe, K., Ibaraki, T.: Formulation and tabu search algorithm for the resource constrained project scheduling problem. In: Ribeiro, C.C., Hansen, P. (eds.) Essays and Surveys in Metaheuristics, pp. 557–588. Kluwer Academic, Dordrecht (2002) Google Scholar
  53. Palpant, M., Artigues, C., Michelon, P.: LSSPER: solving the resource–constrained project scheduling problem with large neighbourhood search. Ann. Oper. Res. 131, 237–257 (2004) MathSciNetMATHCrossRefGoogle Scholar
  54. Pinson, E., Prins, C., Rullier, F.: Using tabu search for solving the resource constrained project scheduling problem. Tech. rep., Universite Catholique de l’Ouest, Angers (1994) Google Scholar
  55. Schirmer, A., Riesenberg, S.: Case-based reasoning and parameterized random sampling for project scheduling. Tech. rep., University of Kiel, Germany (1998) Google Scholar
  56. Slowinski, R., Soniewicki, B., Weglarz, J.: DSS for multiobjective project scheduling. Eur. J. Oper. Res. 79, 220–229 (1994) MATHCrossRefGoogle Scholar
  57. Spears, W.M., Dejong, K.A.: On the virtues of parameterized uniform crossover. In: Proceedings of the Fourth International Conference on Genetic Algorithms, pp. 230–236 (1991) Google Scholar
  58. Sprecher, A.: Scheduling resource-constrained projects competitively at modest memory requirements. Manag. Sci. 46, 710–723 (2000) CrossRefGoogle Scholar
  59. Stinson, J.P., Davis, E.W., Khumawala, B.M.: Multiple resource-constrained scheduling using branch and bound. AIIE Trans. 10, 252–259 (1978) Google Scholar
  60. Stork, F., Uetz, M.: On the generation of circuits and minimal forbidden sets. Math. Program. 102, 185–203 (2005) MathSciNetMATHCrossRefGoogle Scholar
  61. Thomas, P.R., Salhi, S.: A tabu search approach for the resource constrained project scheduling problem. J. Heuristics 4, 123–139 (1998) MATHCrossRefGoogle Scholar
  62. Tormos, P., Lova, A.: A competitive heuristic solution technique for resource-constrained project scheduling. Ann. Oper. Res. 102, 65–81 (2001) MathSciNetMATHCrossRefGoogle Scholar
  63. Tormos, P., Lova, A.: Integrating heuristics for resource constrained project scheduling: one step forward. Tech. rep., Department of Statistics and Operations Research, Universidad Politecnica de Valencia (2003) Google Scholar
  64. Valls, V., Ballestin, J., Quintanilla, M.S.: A hybrid genetic algorithm for the RCPSP. Tech. rep., Department of Statistics and Operations Research, University of Valencia (2003) Google Scholar
  65. Valls, V., Ballestin, F., Quintanilla, M.S.: A population-based approach to the resource-constrained project scheduling problem. Ann. Oper. Res. 131, 305–324 (2004) MathSciNetMATHCrossRefGoogle Scholar
  66. Valls, V., Ballestin, F., Quintanilla, M.S.: Justification and RCPSP: a technique that pays. Eur. J. Oper. Res. 165, 375–386 (2005) MATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • José Fernando Gonçalves
    • 1
  • Mauricio G. C. Resende
    • 2
  • Jorge J. M. Mendes
    • 3
  1. 1.LIAAD, Faculdade de Economia do PortoUniversidade do PortoPortoPortugal
  2. 2.Algorithms and Optimization Research DepartmentAT&T Labs ResearchFlorham ParkUSA
  3. 3.Instituto Superior de Engenharia do PortoInstituto Politécnico do PortoPortoPortugal

Personalised recommendations