Journal of Heuristics

, Volume 17, Issue 4, pp 389–414 | Cite as

Local search for the surgery admission planning problem

Open Access
Article

Abstract

We present a model for the surgery admission planning problem, and a meta-heuristic algorithm for solving it. The problem involves assigning operating rooms and dates to a set of elective surgeries, as well as scheduling the surgeries of each day and room. Simultaneously, a schedule is created for each surgeon to avoid double bookings. The presented algorithm uses simple Relocate and Two-Exchange neighbourhoods, governed by an iterated local search framework. The problem’s search space associated with these move operators is analysed for three typical fitness surfaces, representing different compromises between patient waiting time, surgeon overtime, and waiting time for children in the morning on the day of surgery. The analysis shows that for the same problem instances, the different objectives give fitness surfaces with quite different characteristics. We present computational results for a set of benchmarks that are based on the admission planning problem in a chosen Norwegian hospital.

Keywords

Surgery allocation Surgery scheduling Surgery admission planning Operating theatre planning Meta-heuristics Iterated local search Search space analysis 

References

  1. Barnes, J.W., Colletti, B.W., Neuway, D.L.: Using group theory and transition matrices to study a class of metaheuristic neighborhoods. Eur. J. Oper. Res. 138(3), 531–544 (2002) MATHCrossRefMathSciNetGoogle Scholar
  2. Beliën, J., Demeulemeester, E.: Building cyclic master surgery schedules with leveled resulting bed occupancy. Eur. J. Oper. Res. 176(2), 1185–1204 (2007) MATHCrossRefGoogle Scholar
  3. Beliën, J., Demeulemeester, E.: A branch-and-price approach for integrating nurse and surgery scheduling. Eur. J. Oper. Res. 189(3), 652–668 (2008). 0377-2217 DOI: 10.1016/j.ejor.2006.10.060 MATHCrossRefGoogle Scholar
  4. Beyer, W.A., Stein, M.L., Ulam, S.M.: Metric in biology, an introduction. Preprint LA-4937, University of California, Los Alamos (1972) Google Scholar
  5. Blake, J.T., Carter, M.: Surgical process scheduling: a structured review. J. Soc. Heal. Syst. 5(3), 17–30 (1997) Google Scholar
  6. Blake, J.T., Carter, M.W.: A goal programming approach to strategic resource allocation in acute care hospitals. Eur. J. Oper. Res. 140(3), 541–561 (2002) MATHCrossRefMathSciNetGoogle Scholar
  7. Blake, J.T., Dexter, F., Donald, J.: Operating room managers’ use of integer programming for assigning block time to surgical groups: a case study. Anesth. Analg. 94(1), 143–148 (2002) Google Scholar
  8. Burke, E.K., De Causmaecker, P., Vanden Berghe, G., Van Landeghem, H.: The state of the art of nurse rostering. J. Sched. 7(6), 441–499 (2004). 10.1023/B:JOSH.0000046076.75950.0b MATHCrossRefMathSciNetGoogle Scholar
  9. Cardoen, B., Demeulemeester, E., Beliën, J.: Operating room planning and scheduling: a literature review. Eur. J. Oper. Res. 201(3), 921–932 (2009). 0377-2217 DOI: 10.1016/j.ejor.2009.04.011 CrossRefGoogle Scholar
  10. Cardoen, B., Demeulemeester, E., Beliën, J.: Optimizing a multiple objective surgical case sequencing problem. Int. J. Prod. Econ. 119(2), 354–366 (2009). 0925-5273 DOI: 10.1016/j.ijpe.2009.03.009 CrossRefGoogle Scholar
  11. Cardoen, B., Demeulemeester, E., Beliën, J.: Sequencing surgical cases in a day-care environment: an exact branch-and-price approach. Comput. Oper. Res. 36(9), 2660–2669 (2009). 0305-0548 DOI: 10.1016/j.cor.2008.11.012 MATHCrossRefGoogle Scholar
  12. Chaabane, S., Meskens, N., Guinet, A., Laurent, M.: Comparison of two methods of operating theatre planning: application in Belgian hospital. In: 2006 International Conference on Service Systems and Service Management, Troyes (2006) Google Scholar
  13. Charnetski, J.R.: Scheduling operating room surgical procedures with early and late completion penalty costs. J. Oper. Manag. 5(1), 91–102 (1984) CrossRefGoogle Scholar
  14. Denton, B., Viapiano, J., Vogl, A.: Optimization of surgery sequencing and scheduling decisions under uncertainty. Heal. Care Manag. Sci. 10(1), 13–24 (2007) CrossRefGoogle Scholar
  15. Dexter, F., Macario, A.: Changing allocations of operating room time from a system based on historical utilization to one where the aim is to schedule as many surgical cases as possible. Anesth. Analg. 94(5), 1272–1279 (2002) CrossRefGoogle Scholar
  16. Fei, H., Combes, C., Chu, C., Meskens, N.: Endoscopies scheduling problem: a case study. In: IFAC Symposium on Information Control Problems in Manufacturing (2006) Google Scholar
  17. Gendreau, M., Ferland, J., Gendron, B., Hail, N., Jaumard, B., Lapierre, S., Pesant, G., Soriano, P.: Physician scheduling in emergency rooms. In: Burke E.K., Rudov H. (eds.) PATAT 2006, pp. 2–14. Faculty of Informatics, Masaryk University Brno, The Czech Republic (2006) Google Scholar
  18. Guinet, A., Chaabane, S.: Operating theatre planning. Int. J. Prod. Econ. Plan. Control Prod. Syst. 85(1), 69–81 (2003) Google Scholar
  19. Hans, E., Wullink, G., van Houdenhoven, M., Kazemier, G.: Robust surgery loading. Eur. J. Oper. Res. 185(3), 1038–1050 (2008) MATHCrossRefGoogle Scholar
  20. Hansen, P., Mladenovic, N.: Variable neighbourhood search. In: Burke, E.K., Kendall, G. (eds.) Search Methodologies—Introductory Tutorials in Optimization and Decision Support Techniques, vol. 1, pp. 211–238. Springer, Berlin (2005) Google Scholar
  21. Hoos, H.H., Stutzle, T.: Stochastic Local Search: Foundations and Applications. Morgan Kaufmann, San Mateo (2005) MATHGoogle Scholar
  22. Jebali, A., Alouane, A.B.H., Ladet, P.: Operating rooms scheduling. Int. J. Prod. Econ. Control Manag. Prod. Syst. 99(12), 52–62 (2006) Google Scholar
  23. Dia Lourenco, H.R., Martin, O.C., Stutzle, T.: Iterated local search. In: Glover, F., Kochenberger, G. (eds.) Handbook of Metaheuristics, pp. 321–353. Kluwer Academic, Norwell (2002) Google Scholar
  24. Macario, A., Vitez, T.S., Dunn, B., McDonald, T.: Where are the costs in perioperative care?: Analysis of hospital costs and charges for inpatient surgical care. Anesthesiology 83(6), 1138–1144 (1995) CrossRefGoogle Scholar
  25. Marcon, E., Kharraja, S., Simonnet, G.: Minimization of the risk of no realization for the planning of the surgical interventions into the operation theatre. In: 8th IEEE International Conference on Emerging Technologies and Factory Automation, pp. 675–680. Antibes-Juan les Pins, France (2001) Google Scholar
  26. Noyan Ogulata, S., Erol, R.: A hierarchical multiple criteria mathematical programming approach for scheduling general surgery operations in large hospitals. J. Med. Syst. 27(3), 259–270 (2003) CrossRefGoogle Scholar
  27. Orlowski, M., Pachter, M.: An algorithm for the determination of a longest increasing subsequence in a sequence. Comput. Math. Appl. 17(7), 10735 (1989) CrossRefMathSciNetGoogle Scholar
  28. Ozkarahan, I.: Allocation of surgical procedures to operating rooms. J. Med. Syst. 19(4), 333–352 (1995). DOI: 10.1007/BF02257264 CrossRefGoogle Scholar
  29. Ozkarahan, I.: Allocation of surgeries to operating rooms by goal programing. J. Med. Syst. 24(6), 339–378 (2000) CrossRefGoogle Scholar
  30. Pham, D.-N., Klinkert, A.: Surgical case scheduling as a generalized job shop scheduling problem. Eur. J. Oper. Res. 185(3), 1011–1025 (2008). 0377-2217 DOI: 10.1016/j.ejor.2006.03.059 MATHCrossRefMathSciNetGoogle Scholar
  31. Przasnyski Z.H.: Operating room scheduling—a literature review. AORN J. 44(1), 67–76 (1986) CrossRefGoogle Scholar
  32. Reeves, C.R.: Fitness landscapes. In: Burke, E.K., Kendall, G. (eds.): Search Methodologies, pp. 587–610. Springer, Berlin (2005) CrossRefGoogle Scholar
  33. Roland, B., Di Martinelly, C., Riane, F.: Operating theatre optimization: a resource-constrained based solving approach. In: Service Systems and Service Management, 2006 International Conference on, vol. 1, pp. 443–448 (2006) Google Scholar
  34. Santibanez, P., Begen, M., Atkins, D.: Surgical block scheduling in a system of hospitals: an application to resource and wait list management in a British Columbia health authority. Heal. Care Manag. Sci. 10(3), 269–282 (2007) CrossRefGoogle Scholar
  35. Schiavinotto, T., Stutzle, T.: A review of metrics on permutations for search landscape analysis. Comput. Oper. Res. 34(10), 3143–3153 (2007). 0305-0548 DOI: 10.1016/j.cor.2005.11.022 MATHCrossRefGoogle Scholar
  36. Sier, D., Tobin, P., McGurk, C.: Scheduling surgical procedures. J. Oper. Res. Soc. 48(9), 884–891 (1997) MATHGoogle Scholar
  37. Weinberger, E.: Correlated and uncorrelated fitness landscapes and how to tell the difference. Biol. Cybern. 63(5), 325–336 (1990). DOI: 10.1007/BF00202749 MATHCrossRefGoogle Scholar
  38. Weiss, E.N.: Models for determining estimated start times and case orderings in hospital operating rooms. IIE Trans. 22(2), 143–150 (1990) CrossRefGoogle Scholar
  39. Zhou, J., Dexter, F.: Method to assist in the scheduling of add-on surgical cases-upper prediction bounds for surgical case durations based on the log-normal distribution. Anesthesiology 89(5) (1998) Google Scholar

Copyright information

© The Author(s) 2010

Authors and Affiliations

  1. 1.Department of Applied MathematicsSINTEF ICTOsloNorway
  2. 2.Centre of Mathematics for ApplicationsUniversity of OsloOsloNorway
  3. 3.School of Computer ScienceUniversity of NottinghamNottinghamUK

Personalised recommendations