Advertisement

Journal of Heuristics

, Volume 16, Issue 5, pp 681–714 | Cite as

Solving the musical orchestration problem using multiobjective constrained optimization with a genetic local search approach

  • Grégoire Carpentier
  • Gérard Assayag
  • Emmanuel Saint-James
Article

Abstract

In this paper a computational approach of musical orchestration is presented. We consider orchestration as the search of relevant sound combinations within large instruments sample databases and propose two cooperating metaheuristics to solve this problem. Orchestration is seen here as a particular case of finding optimal constrained multisets on a large ensemble with respect to several objectives. We suggest a generic and easily extendible formalization of orchestration as a constrained multiobjective search towards a target timbre, in which several perceptual dimensions are jointly optimized. We introduce Orchidée, a time-efficient evolutionary orchestration algorithm that allows the discovery of optimal solutions and favors the exploration of non-intuitive sound mixtures. We also define a formal framework for global constraints specification and introduce the innovative CDCSolver repair metaheuristic, thanks to which the search is led towards regions fulfilling a set of musical-related requirements. Evaluation of our approach on a wide set of real orchestration problems is also provided.

Keywords

Orchestration Computer-aided composition Computer music Compositional algorithms Multiobjective combinatorial optimization Evolutionary algorithms Global constraints Local search CDCSolver 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Assayag, G., Rueda, C., Laurson, M., Agon, C., Delerue, O.: Computer-assisted composition at IRCAM: from PatchWork to OpenMusic. Comput. Music J. 23(2), 59–72 (1999) CrossRefGoogle Scholar
  2. Caetano, M., Manzolli, J., Von Zuben, F.: Applications of evolutionary computing. In: Self-organizing Bio-inspired Sound Transformation. Lecture Notes in Computer Science, pp. 477–487. Springer, Berlin (2007) Google Scholar
  3. Carpentier, G.: Approche computationnelle de l’orchestration musicale—optimisation multicritère sous contraintes de combinaisons instrumentales dans de grandes banques de sons. Ph.D. thesis, Université Pierre et maris Curie (Paris-6) (2008) Google Scholar
  4. Carpentier, G., Bresson, J.: Interacting with symbolic, sound and feature spaces in orchidée, a computer-aided orchestration environment. Comput. Music J. (2009, accepted for publication) Google Scholar
  5. Carpentier, G., Tardieu, D., Assayag, G., Rodet, X., Saint-James, E.: Imitative and generative orchestrations using pre-analyzed sound databases. In: Proceedings of Sound and Music Computing Conference (SMC), pp. 115–122, Marseille, France (2006) Google Scholar
  6. Codognet, P., Diaz, D.: Yet another local search method for constraint solving. In: AAAI Fall Symposium on Using Uncertainty within Computation, Cape Cod (2001) Google Scholar
  7. Deb, K.: An efficient constraint handling method for genetic algorithms. Comput. Methods Appl. Mech. Eng. 186, 311–338 (2000) zbMATHCrossRefGoogle Scholar
  8. Eiben, A.: Evolutionary algorithms and constraint satisfaction: definitions, survey, methodology, and research directions. In: Theoretical Aspects of Evolutionary Computing, pp. 13–58. Springer, Berlin (2001) Google Scholar
  9. Elaoud, S., Loukil, T., Teghem, J.: The Pareto fitness genetic algorithm: test function study. Eur. J. Oper. Res. 177, 1703–1719 (2007) zbMATHCrossRefMathSciNetGoogle Scholar
  10. Glover, F., Laguna, H.: Tabu Search. Kluwer Academic, Dordrecht (1997) zbMATHGoogle Scholar
  11. Grosan, C.: Evolutionary optimization: algorithms and applications. Tech. rep., Dept. Of Computer Science, Babes-Bolyai University of Cluj-Napoca, Romania (2005) Google Scholar
  12. Hansen, P., Jaszkiewicz, A.: Evaluating quality of approximations to the non-dominated set. Tech. Rep. IMM-REP-1998-7, Dept. Of Mathematical Modelling, Technical University of Denmark (1997) Google Scholar
  13. Horner, A., Beauchamp, J.: A genetic algorithm-based method for synthesis of low peak amplitude signals. J. Acoust. Soc. Am. 99(1), 433–443 (1996) CrossRefGoogle Scholar
  14. Hummel, T.A.: Simulation of human voice timbre by orchestration of acoustic music instruments. In: Proceedings of International Computer Music Conference (ICMC) (2005) Google Scholar
  15. Jaszkiewicz, A.: Genetic local search for multiple objective combinatorial optimization. Eur. J. Oper. Res. 137(1), 50–71 (2002) zbMATHCrossRefMathSciNetGoogle Scholar
  16. Mariott, K., Stuckey, P.: Programming with Constraints: An Introduction. MIT Press, Cambridge (1998) Google Scholar
  17. McAdams, S., Winnsberg, S., Donnadieu, S., De Soete, G., Krimphoff, J.: Perceptual scaling of synthesized musical timbres: common dimensions, specificities, and latent subject classes. Psychol. Res. 58, 177–192 (1995) CrossRefGoogle Scholar
  18. McDermott, J., Griffith, N., O’Neill, J.: Target-driven genetic algorithms for synthesizer control. In: 9th Int. Conference on Digital Audio Effects (DAFx’06), Montreal, Canada (2006) Google Scholar
  19. Miranda, E., Biles, J. (eds.): Evolutionary Computer Music. Springer, Berlin (2007) Google Scholar
  20. Nouno, G., Cont, A., Carpentier, G., Harvey, J.: Making an Orchestra Speak, Proceedings of the Sound and Music Computing (SMC’09) Conference, Porto, Portugal, pp. 277–282 (2009) Google Scholar
  21. Psenicka, D.: Sporch: an algorithm for orchestration based on spectral analyses of recorded sounds. In: Proceedings of International Computer Music Conference (ICMC) (2003) Google Scholar
  22. Puckette, M.: Combining event and signal processing in the Max graphical programming environment. Comput. Music J. 15(3) (1991) Google Scholar
  23. Riionheimo, J., Valimaki, V.: Parameter estimation of a plucked string synthesis model using a genetic algorithm with perceptual fitness calculation. EURASIP J. Appl. Signal Process. 8 (2003) Google Scholar
  24. Rose, F., Hetrick, J.: Enhancing orchestration technique via spectrally based linear algebra methods. Comput. Music J. 33(1) (2009) Google Scholar
  25. Stewart, B., White III C.: Multiobjective A*. J. ACM 38(4), 775–814 (1991) zbMATHMathSciNetGoogle Scholar
  26. Tardieu, D.: Modèles d’instruments pour l’aide à l’orchestration. Ph.D. thesis, Université Pierre et maris Curie (Paris-6) (2008) Google Scholar
  27. Tardieu, D., Rodet, X.: An instrument timbre model for computer aided orchestration. In: IEEE Workshop on Applications of Signal Processing to Audio and Acoustics, New Paltz, NY, USA (2007) Google Scholar
  28. Vasquez, M., Habet, D., Dupont, A.: Neighboorhood design by consistency checking. In: International Workshop on Heuristics (2002) Google Scholar
  29. van Veldhuizen, D.A.: Multiobjective evolutionary algorithms: classifications, analyses and new innovations. Ph.D. thesis, Department of Electrical and Computer Engineering, Graduate School of Engineering, Air Force Institute of Technology (1999) Google Scholar
  30. Whitley, D.: A genetic algorithm tutorial. Tech. Rep. CS-93-103, Colorado State University (1993) Google Scholar
  31. Zitzler, E., Thiele, L., Laumanns, M., Foneseca, C.M., Grunert da Fonseca, V.: Performance assessment of multiobjective optimizers: an analysis and review. IEEE Trans. Evol. Comput. 7(2), 117–132 (2003) CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Grégoire Carpentier
    • 1
  • Gérard Assayag
    • 1
  • Emmanuel Saint-James
    • 2
  1. 1.IRCAMParisFrance
  2. 2.LIP6Paris Cedex 05France

Personalised recommendations